
 Advanced search

Linux Journal Issue #125/September 2004

Features

Listening to FM Radio in Software, Step by Step by Eric Blossom
Software radio is a really big important technology. Don't take
our word for it—try this simple project.

Chat on the Air with LinPsk by Volker Schroer
Got your ham license? Let your Linux box join the fun too, with
the latest digital radio mode.

Indepth

Driving the Mars Rovers by Frank Hartman and Scott Maxwell
Rovers don't run Linux yet, but back on Earth, Linux is the
platform of choice for planning their routes and collecting data.

The GPS Toolkit by Brian W. Tolman and Ben Harris
Where on Earth are you? Do you need to know with better
precision than an off-the-shelf GPS unit? Here's the software that
can help you.

Ximba Radio: Developing a GTK+/Glade GUI to XM Satellite Radio by
Michael J. Hammel

Make the most of your satellite radio subscription with a friendly
GUI for picking stations and more.

Ten Commands Every Linux Developer Should Know by John Fusco
Making quality software requires simplifying and automating
common tasks to save your time for the hard parts.

LDAP Account Manager by John H. Terpstra

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7440.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7570.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7467.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7487.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7330.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7382.html

Use one tool to create and modify accounts for your Linux and
Microsoft Windows users.

Embedded

Space-Time Process—Linux Style by Ian McLoughlin and Tom Scott
Practical advice on how Linux fits into a wireless R&D operation,
from a “boat anchor” cluster for numerical simulations to the
latest generation of embedded ARM processors.

Toolbox

At the Forge WordPress by Reuven M. Lerner
Kernel Korner Extending Battery Life with Laptop Mode by Bart
Samwel
Cooking with Linux The Wireless Kitchen by Marcel Gagné
Paranoid Penguin Rehabilitating Clear-Text Network Applications with
Stunnel by Mick Bauer

Column

EOF by Rich Bodo
Faster Training for Smarter Customers

Reviews

AML's M7100 Wireless Linux Terminal by Tony Steidler-Dennison
America's Army for Linux by Gary Glasscock

Departments

From the Editor
Letters
upFRONT
On The Web
Best of Technical Support
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7386.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7624.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7539.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7623.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7628.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7628.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7612.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7481.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7444.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7632.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7603.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7631.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7627.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7625.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7626.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Listening to FM Radio in Software, Step by Step

Eric Blossom

Issue #125, September 2004

Get started in software-defined radio with a project that can tune in two FM
stations at once.

My article “GNU Radio: Tools for Exploring the Radio Frequency Spectrum” [LJ,
June 2004] provides an overview of how the GNU Radio system works and
discusses a couple hardware options for getting the RF signals digitized and
into the computer. This article takes a look at how to use GNU Radio to listen to
FM radio.

The hardware setup used in this article is shown in Figure 1. It's the brute-force,
no-frills approach and is good for explaining how everything works. Later in the
article, we discuss the Universal Software Radio Peripheral (USRP) and what it
can do for you.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f1.large.jpg

Figure 1. Cable Modem Tuner RF Front End

Our setup consists of a conventional FM dipole antenna, a cable modem tuner
module mounted on an evaluation board and a 20M sample/second PCI
analog-to-digital converter (ADC) card. The antenna plugs in to the input of the
tuner module. The tuner module IF output is connected with a piece of coaxial
cable to the ADC input on the back of the computer. The tuner module eval
board is connected to the PC's parallel port so that we have a way of controlling
the module.

The specific hardware we're using is a Microtune 4937 DI5 3X7702 cable
modem tuner module and a Measurement Computing PCI-DAS 4020/12 ADC
board. This particular tuner module is hard to get, but others, such as those
from Sharp Microelectronics, ought to work fine (see the on-line Resources
section).

The cable modem tuner functions as our RF front end and is responsible for
translating the radio frequency signals that we're interested in down to a range
that our ADC can deal with. In this case, the module translates a selectable
6MHz chunk of the spectrum in the range of 50MHz–800MHz down to a 6MHz
chunk centered at 5.75MHz. For more background on these concepts, see the
June article mentioned previously.

 Getting Started

First off, let's take a look at what happens when we tune our front end to the
middle of the FM band, say 100.1MHz. Figure 2 shows the received samples vs.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f1.large.jpg

time. This view, the time domain, is what you'd see on an oscilloscope. It's not
particularly enlightening, but it does show that our samples are in the range of
–170 to –70, which is fine. In an ideal world, they would be symmetric about
zero. For our purposes, the offset won't matter.

Figure 2. ADC Samples in the Time Domain

The frequency domain provides additional information. In this case, we grab
1,024 samples at a time and compute the discrete Fourier transform using the
fast Fourier transform (FFT) algorithm. This gives us a representation of the
frequencies that are contained in the input signal. Figure 3 shows the resulting
spectrum. The x-axis is frequency, and the y-axis is power in decibels (10 *
log10 power). The low end is at zero Hz, and the top end is at 10MHz, half our

sampling rate.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f3.large.jpg

Figure 3. Fast Fourier Transform of FM Band with Nine Stations

Each of the spikes in Figure 3 is a radio station. Our software sees them all at
once! To listen to a station, we need a way to separate it from all of the others,
translate it to baseband (DC, 0Hz) and reverse the effect of the frequency
modulation. We work through this step by step, but first let's talk about FM.

 What Is Frequency Modulation?

To understand how an FM receiver works, it's helpful to know a bit about how
FM signals are generated. With FM, the instantaneous frequency of the
transmitted waveform is varied as a function of the input signal. Figure 4 shows
m(t), the input signal (the message, music and so forth), and s(t), the resulting
modulated output. To be rigorous, the instantaneous frequency at any time is
given by the following formula:

f(t) = k*m(t) + fc

m(t) is the input signal, k is a constant that controls the frequency sensitivity
and fc is the frequency of the carrier (for example, 100.1MHz). Remember that

frequency has units of radians per second. As a result, frequency can be
thought of as the rate at which something is rotating. If we integrate frequency,
we get phase, or angle. Conversely, differentiating phase with respect to time
gives frequency. These are the key insights we use to build the receiver.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f4.large.jpg

Figure 4. A Simple Frequency Modulated Signal

 The Block Diagram

Figure 5 shows our strategy for listening to an FM station. If we remove the
carrier, we're left with a baseband signal that has an instantaneous frequency
proportional to the original message m(t). Thus, our challenge is to find a way
to remove the carrier and compute the instantaneous frequency.

Figure 5. Block Diagram of FM Receiver

The first part is easy. We get rid of the carrier by using our software digital
downconverter (DDC) block, freq_xlating_fir_filter_scf. This block is composed
conceptually of a numerically controlled oscillator that generates sine and
cosine waveforms at the frequency that we want to translate to zero, a mixer
(that's a multiplier to us software folks) and a decimating finite impulse
response filter. The scf suffix indicates that this block takes a stream of shorts
on its input, produces a stream of complexes on its output and uses floating-
point taps to specify the filter.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f5.large.jpg

The digital downconverter does its job by taking advantage of a trigonometric
identity that says when you multiply two sinusoids of frequency f1 and f2
together, the result is composed of two new sinusoids, one at f1+f2 and the

other at f1–f2. In our case, we multiply the incoming signal by the frequency of

the carrier. The output consists of two components, one at 2x the carrier and
one at zero. We get rid of the 2x component with a low-pass filter, leaving us
the baseband signal.

 MIPS Are Us!

A straightforward implementation of the digital downconverter block in
software is extremely expensive computationally. We'd be performing the sine
and cosine generation and multiplication at the full input rate. On a Pentium 4,
computing sine and cosine takes on the order of 150 cycles. Given a 20M
sample/sec input stream, we'd be burning up 20e6 * 150 = 3e9 cycles/sec
merely computing sine and cosine! Definitely a non-starter.

The good news is there's a better way to implement the DDC in software. This
technique, described by Vanu Bose, et al., in “Virtual Radios” (see Resources),
allows us to run all of the computation at the decimated rate by rearranging the
order of the operations and using frequency-specific complex filter coefficients
instead of real coefficients. The end result is a big win! We can do it in real time!

 Quadrature Demodulation

The next job is to compute the instantaneous frequency of the baseband
signal. We use the quadrature_demod_cf block for this. We approximate
differentiating the phase by determining the angle between adjacent samples.
Recall that the downconverter block produces complex numbers on its output.
Using a bit more trigonometry, we can determine the angle between two
subsequent samples by multiplying one by the complex conjugate of the other
and then taking the arc tangent of the product. Listings 1 and 2 show the
implementation of the quadrature_demod_cf block. Once you know what you
want, it doesn't take much code. The bulk of the signal processing is the three-
line loop in sync_work.

Listing 1. Quadrature Demodulator Header

/*
 * Copyright 2004 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute
 * it and/or modify it under the terms of the GNU
 * General Public License as published by the Free
 * Software Foundation; either version 2, or (at

 * your option) any later version.
 */

#ifndef INCLUDED_GR_QUADRATURE_DEMOD_CF_H
#define INCLUDED_GR_QUADRATURE_DEMOD_CF_H

#include <gr_sync_block.h>

class gr_quadrature_demod_cf;
typedef boost::shared_ptr<gr_quadrature_demod_cf>
 gr_quadrature_demod_cf_sptr;

gr_quadrature_demod_cf_sptr
gr_make_quadrature_demod_cf (float gain);

/*
 * quadrature demodulator: complex in, float out
 */
class gr_quadrature_demod_cf : public gr_sync_block
{
 friend gr_quadrature_demod_cf_sptr
 gr_make_quadrature_demod_cf (float gain);
 gr_quadrature_demod_cf (float gain);

 float d_gain;

 public:

 int sync_work (
 int noutput_items,
 gr_vector_const_void_star &input_items,
 gr_vector_void_star &output_items);
};

#endif /* INCLUDED_GR_QUADRATURE_DEMOD_CF_H */

Listing 2. Quadrature Demodulator Implementation

/*
 * Copyright 2004 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute
 * it and/or modify it under the terms of the GNU
 * General Public License as published by the Free
 * Software Foundation; either version 2, or (at
 * your option) any later version.
 */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <gr_quadrature_demod_cf.h>
#include <gr_io_signature.h>

gr_quadrature_demod_cf::gr_quadrature_demod_cf (
 float gain)
 : gr_sync_block (
 "quadrature_demod_cf",
 gr_make_io_signature(1,1,sizeof (gr_complex)),
 gr_make_io_signature(1,1,sizeof (float))),
 d_gain (gain)
{
 set_history (2); // provide 1 sample look ahead
}

gr_quadrature_demod_cf_sptr
gr_make_quadrature_demod_cf (float gain)
{
 return gr_quadrature_demod_cf_sptr (
 new gr_quadrature_demod_cf (gain));
}

int
gr_quadrature_demod_cf::sync_work (
 int noutput_items,
 gr_vector_const_void_star &input_items,
 gr_vector_void_star &output_items)
{
 gr_complex *in = (gr_complex *) input_items[0];
 float *out = (float *) output_items[0];
 in++; // ensure that in[-1] is valid

 for (int i = 0; i < noutput_items; i++){
 gr_complex product = in[i] * conj (in[i-1]);
 out[i] = d_gain * arg (product);
 }

 return noutput_items;
}

Tying this all together, Figure 6 shows the output of the digital downconverter,
and Figure 7 shows the output of the quadrature demodulator. In Figure 7, you
can see all the components of the FM waveform. From 0 to about 16kHz is the
left plus right (L+R) audio. The peak at 19kHz is the stereo pilot tone. The left
minus right (L-R) stereo information is centered at 2x the pilot (38kHz) and is
AM-modulated on top of the FM. Additional subcarriers are sometimes found in
the region of 57kHz–96kHz.

Figure 6. FFT at Output of Digital Downconverter

https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f7.large.jpg

Figure 7. FFT of Demodulated FM Signal

To keep life simple, we low pass the output of the quadrature demodulator
with a cutoff frequency of 16kHz. This gives us a monaural output that we
connect to the sound card outputs.

 A Multichannel Receiver

Listing 3, available from the Linux Journal FTP site (see Resources), is the Python
code that implements the overall receiver. In fact, it can listen to two FM
stations at the same time, one out the left speaker and one out the right! I'm
not arguing that this is a particularly practical application, but it does illustrate
some of the power of software radio. This idea of extracting multiple stations
concurrently could be used as the basis of a multichannel TiVo-like device for
radio.

The code is split into three functions. main handles the argument parsing,
manages the RF front end and controls the main signal processing loop. If we're
receiving a single station, we tell the RF front end to put the station right at the
center of the tuner's output frequency, the IF. If we're receiving two stations, we
ensure that they're within 5.5MHz of each other. This restriction is due to the
SAW filter built in to the cable modem tuner. It's a bandpass filter centered at
5.75MHz that's about 6MHz wide, the width of a North American TV channel. In
this case, we split the difference and tune the front end exactly halfway
between the two stations. build_graph instantiates the common signal
processing blocks and connects them together. In both the single and dual-
station modes, we use a single high-speed analog-to-digital converter for input

https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7505f7.large.jpg

and a single sound card for output. For each station that we want to receive
concurrently, we instantiate a digital downconverter, quadrature demodulator
and low-pass filter.

 There's More Than One Way to Do It!

The maximum number of stations that can be received concurrently is a
function of the speed of your computer. Even with our fancy implementation,
most of the CPU cycles still are burned in the freq_xlating_fir_filter blocks. What
we've described could be called the dumb ADC/brute-force method. One way to
free up computational resources is to move the digital downconversion into
hardware. Companies such as Texas Instruments, Intersil and Analog Devices
sell dedicated ASICs that do this. The strategy used in the Universal Software
Radio Peripheral (USRP) is to code the digital downconverter in the Verilog
hardware description language and then download the resulting bitstream over
the USB into the FPGA. This gives us a combined hardware/software system
that maximizes flexibility while still allowing us to off-load some of the more
computationally intensive parts into hardware. For more information on the
USRP, see the GNU Radio Wiki.

 Summary

We've walked through a fully functional but stripped-down multichannel FM
receiver. We managed to turn a couple thousand dollars' worth of hardware
into the equivalent of two $5 transistor radios, and we learned a bunch in the
process. For those of you interested in pursuing FM listening, the GNU Radio
code base includes a substantially higher fidelity FM receiver (hifi_fm.py), along
with all kinds of other goodies.

Right now, a lot of interesting work is being done with GNU Radio. Some are
focusing on mobile ad hoc networking, others on the legacy amateur radio
waveforms, some on software GPS and another group is working on designing
the next-generation ground-to-space amateur satellite communication system.
Although the GNU Radio toolkit is mostly indifferent to I/O devices, most of
these efforts are using or planning on using the USRP as the interface between
the RF world and the PC.

Resources for this article: /article/7650.

Eric Blossom is the founder of the GNU Radio Project. Prior to his involvement
with software radio, he spent many years in the secure phone business. When
he's not hacking software radio, you're likely to find him practicing yoga or
jujutsu. He can be reached at eb@comsec.com.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/125/7650.html
mailto:eb@comsec.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Chat on the Air with LinPsk

Volker Schroer

Issue #125, September 2004

The original international electronic hobbyist community is ham radio. Here are
the basics of the chat room without the room.

Long before the Internet was established, an international group of people was
chatting on the air—the radio amateurs. In the beginning, they used Morse
code, a special form of digital communication. Over the years, more digital
modes have been introduced to ham radio. Today, you can use satellites for
communication or the moon to reflect radio waves. In the past, you could
communicate with the Mir Space Station; now, it's with the International Space
Station. To learn more about the fascinating world of ham radio, take a look at
the on-line Resources section for this article.

One of the most popular new communication modes in use today is PSK31.
Peter Martinez (G3PLX) developed PSK31 based on an idea by Pawel Jalocha
(SP9VRC). PSK31 was designed for enabling keyboard-to-keyboard chats. PSK31
is a phase shift keying modulation technique, requiring a bandwidth of about
31Hz. By comparison, a ham FM signal is almost 500 times as large, about
10kHz.

In the early days, hams built their equipment themselves and tried to improve
it. Today, it is hard to compete against industrial transceivers, but under certain
conditions, digital modes offer a new chance to compete. All you need is your
transceiver, a computer with a sound card and a program that supports the
desired mode. If the program is open source, you also have an opportunity to
do your own experiments.

Radio operators have developed a kind of language that they use for
communication. Some ham-related abbreviations used in this article are listed
in Table 1.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Table 1. Abbreviations

My first contact with PSK31 was in 1999. Even though I was a fan of Linux, I had
to use a Microsoft Windows program for my first PSK31 QSOs. Later, I tried to
develop a PSK31 program for Linux. Luckily, I found WinPsk 1.0, by Moe
Wheatley (AE4JY), which had been released in source code form. I used this
code as the basis for my initial release of LinPsk 0.2. The version 0.7 release of
LinPsk included the expanded functionality of RTTY, and around this time,
LinPsk also was made available for Mac OS X as DarwinPsk.

 Getting LinPsk

The primary source for getting LinPsk is the LinPsk home page, where you can
find the current prerequisites. At the time of this writing, they are GCC 3.3, Qt
3.3.x, fftw 3.0.1 and portaudio v18. See the on-line Resources section for LinPsk
sources. A Debian package of the LinPsk is available. Currently, it requires
either OSS sound drivers or the OSS emulation under ALSA.

ALC Automatic level control

bcnu Be seeing you

CQ General call

DL1KSV
This is my callsign. A callsign is a worldwide, unambiguous

identifier (like an Ethernet MAC address). The prefix DL stands
for Germany.

Dummy
load

Simulated antenna

de From

es And

k Go

pse Please

RX Receive

TX Transmit

QSO Connection

73 Best regards

For those of you who are new to Linux, an ISO image is available that contains a
complete Linux system with many ham-related programs. This image contains
LinPsk. You can download it and burn it onto a CD, then boot your PC from this
CD without installing any programs.

If you decide to install LinPsk yourself, the installation is straightforward:

tar xzf linpsk-0.8.0.3.tar.gz
cd linpsk-0.8.0.3
./configure

Or, you can type:

./configure --prefix="installation directory"

for an installation directory other than the standard /usr/local/bin.

Finally, do:

make
su
make install

That's all. You should find a Linpsk executable in /usr/local/bin.

Now, it's time to connect the sound card to the transceiver. There are different
ways of doing so, and a few proposals can be found at WM2U's PSK31 page.

No other program should use the sound card while Linpsk is starting. KDE's
artsd, for example, should be stopped before running LinPsk, because it
allocates the sound device.

 Running LinPsk for the First Time

The first time you run the program, a warning appears to alert you that no
LinPsk.config file exists. This is a reminder that LinPsk should be configured
first. The configuration can be tweaked or changed at a later stage, but an initial
configuration must be set up. The configure dialog can be found under the
menu title Settings→General Settings. Once selected, a window as shown in
Figure 1 should appear.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7440f1.large.jpg

Figure 1. From the LinPsk General Settings menu you can configure your callsign, time zone
and the devices to use.

The first field contains the callsign, which is used in the macros. The offset
between the local and utc time should be set as well, and it is defined as:

offset = utc - localtime .

To get the configuration dialog for the sound card, demo mode has to be
deselected. The available input and output devices appear, and the one that is
going to be used should be selected. The configuration dialog can be closed by
clicking OK. The settings are not saved automatically for later use, so it is a good
idea to save these settings with Save Settings in the Settings menu.

Tune your transceiver to 14.070.15MHz, upper sideband. If the 20-meter band
is open, you should hear a variety of warbling tones from the radio speaker,
each one representing a ham using PSK31. If everything is connected correctly,
the screen should look like Figure 2 after clicking the RX button.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7440f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7440f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7440f2.large.jpg

Figure 2. The main LinPsk window shows the available PSK31 signals in the lower left.

In the bottom left corner, the spectrum of the received signal is shown, and
beneath that a translation of the spectrum values into colour values appears.

Due to the bandwidth of your transceiver, there may be a black gap on the left
and right side of the spectrum. If a PSK signal is received, you should see one or
more sharp peaks in the spectrum. If you click near the top of one of such a
peak, and the options AFC and Wide under Rx Freq are selected, LinPsk tunes
to the signal. In the circle inside the spectrum display, the phase of the received
signal is represented.

This phase display can be used as indicator for quality of the received signal
and as a tuning indicator at the same time. For a well-tuned BPSK signal, one
sees only a vertical line. If the signal is slightly mistuned, the line is a bit buckled
and rotated against the vertical.

As the AFC pulls the RX frequency to the center frequency of the PSK signal, the
squelch display changes. The bar inside the squelch display increases and
exceeds the threshold, and it changes colour from cyan to yellow. If this
happens, letters appear in the receive window—you're now seeing the ongoing
chat between two or more PSK31 users.

It is possible to listen to more than one QSO at the same time. To do this, one
has to open another RX window from the file menu. As LinPsk supports other
modes of operation, not only PSK, you are asked to select a mode for the new

https://secure2.linuxjournal.com/ljarchive/LJ/125/7440f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7440f2.large.jpg

window. After that, you can click into the spectrum display at the desired
frequency and watch.

 The First QSO

After watching for a while, you might get curious and decide to answer a call. Be
warned, though: you need a license to transmit on the ham bands.

Before transmitting, you should adjust the output volume carefully. PSK31
consumes little bandwidth, but if the output level is too high it can overdrive
your transceiver, resulting in a lot of side loops that do not improve the
coverage of the transmission. It's a good idea to use a dummy load when
adjusting the output volume.

You should set the output volume in the General Settings menu to a low value.
Pushing the TX button changes the labeling from TX to RX. The next time you
push this button, the state changes to RX again.

Re-open the settings and watch the ALC of your transceiver. You should raise
the output volume slowly until the ALC reacts, and then lower the volume some
units again until the ALC settles down. Now the settings can be closed. Switch
back to RX by pressing the TX button, and you are ready to answer calls.

You might tune to a running QSO and wait until it's over and one station calls
CQ. Sending CQ means that the ham operating the station is interested in
starting a new QSO with any other ham out there. Frequently, many QSOs are
running at the same time. Which station will call CQ again first?

In such a case, open more RX windows from the File menu, tune each window
to a QSO and activate the trigger in the upper-left corner. As the text to be
triggered, enter CQ CQ. The trigger corresponds to the active RX window each
time. Switch between the different RX windows and make another one active by
clicking a tab in the right part of the window.

As soon as the trigger text is detected, LinPsk beeps and switches to the
window in which the trigger text was detected. Whichever way you prefer, it
now is time to answer the call.

Push TX and type the text you want to send into the TX window. Each character
of the text transmitted is displayed in the RX window. When all text is
transmitted, push RX again and wait for the reply. If the other station returns to
your response, your first PSK31 QSO is going to start.

 Tips

Make sure that the net option is selected in the Tx Freq window, which is the
default. This option causes the transmit frequency to be identical to the receive
frequency.

You can enter text into the TX window while listening. The prescribe buffer
spans up to 1,000 characters. This text is transmitted as soon as you push TX.
While the text is being transmitted you can add more text. You can use copy
and paste for adding text. When all is transmitted, switch back to RX.

Further Steps

After following or even doing a few QSOs, you should notice that most of the
text you type is the same. So instead of typing callsigns and other things over
and over again, you can use macros, which are intended to make repeating text
as easy as possible. The macro functionality is explained by answering a CQ call
as an example.

Answering a call usually follows a few standard steps. Switch to TX, send the
remote callsign twice, then “de”, then your callsign three times, then “pse k” and
then switch to RX. You can implement all of these steps in a macro. To create a
new macro, open Add Macro in the Settings menu. The first thing to enter is the
name of the new macro. This name serves as a label for the button that
appears in the lower right-hand black box.

We use QSOStart as the macro name and mark the letter Q with a preceeding
&, which enables us to execute this macro by pressing Ctrl-Q. Of course, one is
able to execute this macro by clicking its button as well. The complete macro
definition is shown in Figure 3.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7440f3.large.jpg

Figure 3. Available keywords for macros include your callsign, the other station's callsign and
the time.

In the lower-left side of the window, you can see a list of available keywords.
Double-clicking a keyword copies it from the keyword box into the macro
definition.

Using the @TX@ and @RX@ keywords allows you to switch between different
modes. The @CALLSIGN@ keyword references the callsign entered in the
General Settings menu. @THEIRCALL@ and @THEIRNAME@ reference the
callsign and name field in the QSOData window. You can fill in these fields by
entering the corresponding values directly or by copying and pasting them
from the RX window. If one of the referenced fields is empty, an empty string is
printed when using the macro.

Even inserting the contents of a complete file into a macro is possible. To do so,
one has only to enter the name of file in the user's home directory quoted by
@, or click the @Replace by filename@ keyword and replace the text. No
replacement of keywords takes place inside the files. I used such a text file for
the description of my station and to introduce myself. Because I can use
different files, I am able to send this description in different languages. The
other keywords do exactly what their names suggest.

You can implement the macros depending on your own needs. The number of
macros possible is limited only by memory and storage. If the macros are set
up properly, one can handle complete QSOs with only a few mouse clicks.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7440f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7440f3.large.jpg

Final tip: you should always save settings if you are interested in keeping your
macros.

 Additional Features

Some settings are available to tailor LinPsk to your personal needs. On the Font
Settings submenu, for example, you can select the font and its size. In the
colour submenu, you can choose the colour used to display text in the RX
window. Then, when using many RX windows you can distinguish among them
by colour. The colour of the text is calculated automatically, but you might
prefer some other colours. Displaying the text is done in the same colour used
to paint the center frequencies in the spectrum display.

The colours settings menu sets the colour only for the current active RX
window. By saving the settings, all colour settings are saved and used again on
restart. If you open more RX windows than there are colours set, the additional
colours again are chosen by calculation.

If you want to save the text of a QSO, simply click Record qso. Clicking the
Record button again stops the recording. You activate this feature for each RX
window individually.

The main data of a QSO can be saved to a file. The data is written as plain ASCII
text in adif format. The default name of this file is QSOData.adif and can be
reset in the General Settings menu. If no file by this name exists in the home
directory, the file is created. Each record is appended to the end of this file.

 Future Plans

When beginning work on LinPsk, my objective was to learn C++ and to develop
a PSK31 program for Linux that was easy to use. KDevelop was a great help for
me during this development. Meanwhile, I implemented RTTY as an additional
mode. This mode works, but the decoder part should be improved. At that
point, I tried to modify the code to get a framework for implementing different
digital modes. I tried to implement MFSK16, but that mode is not functional as
of yet. So this is another point for future developments.

I was asked to port LinPsk to Mac OS X. That was an interesting challenge and
thus DarwinPsk was born. At the moment, my development platform is a dual-
boot iBook with Mac OS X and Gentoo Linux. All examples were taken from the
Gentoo Linux part and KDE 3.2. Now I maintain two distributions and receive
many proposals for improving the program. Of course, I receive bug reports as
well. The latest documentation was version 0.6, dated January 2002, so
something new is needed. Help is welcome in the form of writing user-oriented
documentation, testing the program or making proposals for improvements or

reporting bugs. Even implementing new modes or writing is possible.
Improving existing programs or designing new modes fits well with the
experimental nature of amateur radio. And, believe me, the ideas of open
source fit the spirit of ham radio.

73 es bcnu on PSK31, de Volker, DL1KSV

Resources for this article: /article/7642.

Dr Volker Schroer came into contact with Linux in 1995 when setting up a
firewall. Becoming a ham in 1996, he started developing LinPsk in 1999.
Comments and proposals are welcome to dl1ksv@users.sourceforge.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7642.html
mailto:dl1ksv@users.sourceforge.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Driving the Mars Rovers

Frank Hartman

Scott Maxwell

Issue #125, September 2004

Linux is the desktop platform for the team driving NASA's Mars rovers, Spirit
and Opportunity.

At 8:30 PM PST on January 3, 2004, a thousand pounds of metal sent from Earth
blazed through the sky of Mars. Six minutes later, after sprouting a parachute
and airbags, this chunk of metal slammed into the red planet, bounced 28
times over 300 meters and slowly rolled to a stop. The airbags deflated,
revealing the metal pyramid they protected, which in turn unfolded to reveal a
six-wheeled robotic geologist named Spirit.

So began a three-month exploration of Mars. For a team of hundreds of
scientists and engineers at NASA's Jet Propulsion Laboratory, Spirit is serving as
our eyes—and our toolbox, using the tools at the tip of its foldaway arm—
during a new chapter in the exploration of our neighbor planet. As is Spirit's
twin, Opportunity, which duplicated Spirit's performance three weeks later on
the opposite side of Mars. And what are all those scientists and engineers using
to drive the rovers? They are using Linux.

The Mars Exploration Rover (MER) mission marks a turning point for use of
Linux in the space program. Linux has been used on space missions before—a
Debian laptop rode the Space Shuttle on STS-83, for instance, as long ago as
1997. But the Mars Exploration Rover Project is the first JPL mission to use
Linux systems for critical mission operations. On MER, Linux is being used for
high-level science planning and for low-level command sequencing,
visualization and simulation.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 How We Got Here

As odd as this may seem, Linux originally was not intended to be our primary
development platform. Our software initially was intended for use on the Mars
'01 mission, which essentially would have been a repeat of JPL's 1997 Mars
Pathfinder mission. The plan was to do all rover commanding on a single Silicon
Graphics workstation, as had been done on Mars Pathfinder. Our Linux support
was, at that time, mainly a hedge against SGI's fortunes.

After the failure of JPL's Mars '98 missions, however, JPL re-planned its Mars
strategy. The Mars '01 plans were scrapped in favor of a later launch, the
mission that eventually became MER. The upshot was we got two more years of
development time than we had planned, albeit for a different spacecraft than
we had planned. The MER rovers are larger, smarter and more complex than
Pathfinder's Sojourner rover, and each one sports a robotic arm.

In those two years, Linux and the generic x86 hardware it runs on made
enormous strides in both CPU and graphics speeds, thanks in no small part to
graphics chip-maker NVIDIA and its strong Linux support. As a result, we
increasingly came to favor the faster, better, cheaper solution that was Linux.
We eventually purchased two high-end SGIs to add to our Linux boxes during
flight operations, but it is unclear whether we will end up using them; the Linux
boxes now give us equal, if not better, performance. As a result, the MER rovers
are being commanded by multiple teams working in parallel on the dozens of
Linux systems we've purchased for the mission.

 The RSVP System

Our software, a suite of applications called the Rover Sequencing and
Visualization Program (RSVP), was developed, tested and deployed on Linux.
RSVP gives MER's engineers and scientists sophisticated tools for commanding
Mars rovers. Because of the lengthy light-time delays, which amounted to
nearly a 20-minute round-trip on Spirit's landing day, it's not possible to drive
the rovers interactively. Instead, RSVP provides an immersive environment that
accurately displays the rover's environment and simulates its behavior.
Throughout the Martian night, we Earthlings use RSVP to plan a day's activities
at the command level and then uplink the resulting commands to the rover.
The rover executes those commands during the following Martian day.

The two main components of RSVP are the Rover Sequence Editor (RoSE), which
provides text-oriented commanding for all spacecraft commands, and
HyperDrive, which provides advanced three-dimensional graphics for driving,
arm motion and imaging commands. Each of the individual applications can
run in a standalone mode, but they are more powerful when used together. In
combined mode, the applications are run under the control of the parallel

virtual machine (PVM) software developed by Oak Ridge National Laboratories.
PVM provides a data bus, a way for the RSVP component applications to
synchronize their work by passing messages to one another.

The content of most of our messages is based on RML, an XML-based
specification designed specifically for representing rover command sequences.
This message-passing approach has a number of benefits, not the least of
which is that we can implement individual tools in different languages. As long
as the tool can send PVM messages, it can be part of the suite. RoSE, our
message-passing hub, and our message logger are written in Java; HyperDrive,
our image viewer, and our sequence flow browser are written in C++ and C. For
the next mission, we may try adding tools written in scripting languages such as
Perl and Python.

 RoSE

RoSE is a Java application running on the Sun Java Virtual Machine version 1.3.1;
however, it's compiled not with Sun's compiler but with IBM's much faster Java
compiler, Jikes. RoSE benefits from Java's well-known portability: we got the
benefit of compiling and testing on a nice, fast Linux box and periodically
installed and tested it on the SGI with little or no trouble. We even did an
experimental port to Mac OS X, but abandoned it because we lacked time to
support a third platform. There were no evident problems on Mac OS X, but if
any had arisen, we wouldn't have had time to deal with them. We also had no
requirement to support Mac OS X, so we dropped it altogether.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7570f1.large.jpg

Figure 1. RoSE Command Editor (Blurring due to ITAR Restrictions)

RoSE is aggressively data-driven, learning everything it knows about the rover
from XML configuration files read at startup time. The IDE used for developing
RoSE is good old tried-and-true GNU Emacs. Much of RoSE's GUI is built with
hand-crafted Java code using Java's standard GUI toolkit, Swing. As nice as
Swing is, hand-crafting GUI code sometimes is tedious; if a Java-supporting
version of Glade had been available at the time, we likely would have used it.
Still, important parts of the user interface are built dynamically. One of the XML
configuration files RoSE reads at startup time is a description of the rover's
command dictionary, sort of like an application programming interface (API) for
the rover. RoSE uses this command dictionary to generate dialog boxes
dynamically for editing each command, an approach that saved untold
amounts of work as the command dictionary changed dramatically over its
years of development.

The automation-friendly Linux environment contributed greatly to RoSE's
reliability. Early on, we wrote extensive self-test code for RoSE and then set up a
simple cron job to run the tests every night. If any self-tests failed, they were
reported in an e-mail message to the developer the next morning. This helped
us catch bugs early, while the changes that had caused them still were fresh in
our minds. Our aggressive self-testing for RoSE was something of an
experiment, and it is one that paid off handsomely.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7570f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7570f1.large.jpg

As a side note, Java has a reputation for being slow, but we have to say that this
reputation appears to be unfair. Although there are places where RoSE could
be faster, this is true of any software. If we had more time (the constant refrain
in software development), we could eliminate all of the bottlenecks. As it is, Java
is fast enough for our purposes, and Linux's strong Java support has been a
great benefit to us.

 HyperDrive

HyperDrive is the interactive visualization component of the RSVP suite; it's the
part they'll show on CNN. HyperDrive's main purpose is to enable the safe and
efficient planning of rover driving and arm motions by giving the operator a
good understanding of the rover's state and its current environment. This is
accomplished by fusing multiple data sources into a three-dimensional scene
and then providing multiple ways of viewing this scene.

One of the main sources of data for HyperDrive is terrain models generated
from stereo imagery. Most of the cameras on the two rovers are stereo
cameras, which means that they can be used to see with depth perception,
much like human eyes. By using a technique known as stereo correlation, we
can go from the flat, two-dimensional world of a picture into the three-
dimensional world of rendered computer graphics. By combining these terrain
models with CAD data representing the rover, we have the nucleus of a system
that is able to render views of the rover interactively driving over the terrain or
placing its arm on the Martian surface (Figure 2).

We further may combine these renderings with the raw imagery from the rover
cameras to provide an augmented reality view, where the scene as viewed from
the rover is overlaid with synthetic imagery and possibly viewed three-
dimensionally using LCD shutter glasses (Figure 3). We also can render
simulated views from any of the rover's cameras to help in image targeting.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7570f2.large.jpg

Figure 2. Drilling a Rock with the RAT (Rock Abrasion Tool)

Figure 3. Spirit Leaving the Nest in Augmented Reality View

Into this virtual world we place icons and annotations, software-created objects
that illustrate the command sequence and describe features of the world. The
most important group of these objects is the sequence of icons that represents
commands to be executed by the rover. While the text-oriented RoSE editor
shows the entire command sequence for editing, HyperDrive shows only the
subset of commands that have a sensible visual representation. In HyperDrive,

https://secure2.linuxjournal.com/ljarchive/LJ/125/7570f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7570f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7570f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7570f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7570f3.large.jpg

mobility, robotic arm and imaging commands are shown as a string of icons
placed across the terrain, each one located at the position where it will be
executed. This allows us to program the rover's traverses across the terrain
visually and to place its arm with a high degree of precision. Our first placement
on the Martian surface was estimated to be within 5mm of its intended target.
When we placed a second instrument on the same target, we did even better,
placing it within 0.3mm of the first position. Not bad for a target a hundred
million miles away.

Three-dimensional graphics programming under Linux started as quite a
bleeding-edge adventure and matured into a capable platform with robust
drivers and libraries. HyperDrive is based on the OpenGL Performer rendering
API from Silicon Graphics. We use GTK+ and libglade for HyperDrive's user
interface. The rapid prototyping enabled by Glade and libglade made GUI
development painless and efficient, and we highly recommend this toolset to
others in need of a robust interface toolkit. As our primary target evolved from
IRIX to Linux, we were able to use more and more open-source tools and
libraries and then find or build ports back to IRIX to maintain compatibility.

HyperDrive also is able to animate the rover's predicted actions, building an
animation in real time and allowing the user to fly around and examine the
rover's behavior from multiple perspectives. The same feature can be used to
play back the rover's actual performance, based on the rover's daily report. And
we were pleasantly surprised, to say the least, when these playback animations
became a regular feature of JPL's daily press conferences.

 Conclusion

Overall, Linux has evolved and surpassed our expectations substantially for it
as a programming platform. The background of our team initially varied from
experienced Linux advocates to complete Linux newbies, but we all gained new
experience with Linux and the many open-source tools available to its users.
Particularly with regard to accelerated OpenGL-based graphics, what started as
a low-end alternative to high-priced graphics servers continues to outperform
the big iron for our applications.

This research was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and
Space Administration. Reference herein to any specific commercial product,
process or service by trade name, trademark, manufacturer or otherwise does
not constitute or imply its endorsement by the United States Government or
the Jet Propulsion Laboratory, California Institute of Technology.

Frank Hartman currently is a software engineer specializing in computer
graphics and a Mars rover driver at the Jet Propulsion Laboratory in Pasadena,

California. He holds a Bachelor of Fine Arts Degree in Sculpture from the
University of the Arts in Philadelphia and a Master of Science in Aeronautical
and Astronautical Engineering from Stanford University. Frank resides in
Altadena, California with his wife, Leah.

Scott Maxwell is a software developer and Mars rover driver at the Jet
Propulsion Laboratory in Pasadena, California. He enjoys practicing aikido,
reading classic literature and summarizing his own life in a few words. He is the
author of Linux Core Kernel Commentary.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 The GPS Toolkit

Brian W. Tolman

Ben Harris

Issue #125, September 2004

Learn how GPS works and get a sharper fix on your position with this freely
licensed library.

Explosive is perhaps the best term to describe the growth of the Global
Positioning System (GPS) market in recent years. Contributing factors are
numerous, and perhaps the most dramatic are economic: access to GPS is
absolutely free and the cost of hardware continues to plummet. As a result, the
GPS user can choose from a variety of devices that provide a position estimate.
GPS has long been used, however, to explore topics beyond positioning; space
weather, precise timing and continental drift are but three examples.

In order to use GPS for advanced topics or simply for improved positioning, the
raw observations collected by the GPS receiver must be processed. In the past,
the nuts and bolts of such processing have been left up to proprietary software.
Now, a project called the GPS Toolkit, or GPSTk, is available under the LGPL to
the Open Source and research communities. GPSTk is the by-product of GPS
research conducted at the Applied Research Laboratories of the University of
Texas at Austin (ARL:UT) since before the first satellite launched in 1978. It is
the combined effort of many software engineers and scientists. Recently, the
research staff at ARL:UT has decided to open source much of their basic GPS
processing software as the GPSTk.

 The Global Positioning System

The Global Positioning System actually is a US government satellite navigation
system that provides a civilian signal. As of this writing, the signal is broadcast
simultaneously by a constellation of 29 satellites, each with a 12-hour orbit.
From any given position on the Earth, 8–12 satellites usually are visible at a
time.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Figure 1. GPS Satellite Constellation Image from the Aerospace Corporation Web Site
(www.aero.org/news/current/gps-orbit.html)

 GPS in a Nutshell

Each satellite broadcasts spread spectrum signals at 1,575.42 and 1,227.6MHz,
also known as L1 and L2, respectively. Currently, the civil signal is broadcast
only on L1. The signal contains two components, a time code and a navigation
message. By differencing the received time code with an internal time code, the
receiver can determine the distance, or range, that the signal has traveled. This
range observation is offset by errors in the (imperfect) receiver clock; therefore,
it is called a pseudorange. The navigation message contains the satellite
ephemeris, which is a numerical model of the satellite's orbit.

GPS receivers record, besides the pseudorange, a measurement called the
carrier phase, or phase. The phase also is a range observation like the
pseudorange is, except it has an unknown constant added to it, the phase
ambiguity. It also is much smoother, having about 100 times less measurement
noise than the pseudorange, which makes it useful for precise positioning.
Because of the way it is measured, the phase is subject to random, sudden

https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f1.large.jpg
http://www.aero.org/news/current/gps-orbit.html

jumps. These discrete changes always come in multiples of the wavelength of
the GPS signal and are called cycle slips.

 The Position Solution

The standard solution for the user location requires a pseudorange
measurement and an ephemeris for each satellite in view. At least four
measurements are required, as there are four unknowns: three coordinates of
position plus the receiver clock offset. The basic algorithm for the solution is
described in the official GPS Interface Control Document, ICD-GPS-200. The
position solution is corrupted due to two sources of error, errors in the
observations and errors in the ephemeris.

 Reducing Measurement Errors

The GPS signal travels through every layer of the Earth's atmosphere. Each
layer affects the signal differently. The ionosphere, which is the high-altitude,
electrically charged part of the atmosphere, introduces a delay, and therefore a
range error, into the signal. The delay is frequency-dependent, so it can be
computed directly if you have data on both the GPS frequencies. There also is a
delay due to the troposphere, the lower part of the atmosphere. This delay also
can be modeled and removed. Many other errors are associated with the GPS
signal. Multipath reflections and relativistic effects are two examples.

More precise applications reduce the effect of error sources by a technique
referred to as differential GPS (DGPS). By differencing measurements
simultaneously collected by the user and a nearby reference receiver, the
errors common to both receivers (most of them) are removed. The result of
DGPS positioning is a position relative to the reference receiver; adding the
reference position to the DGPS solution results in the absolute user position.

The alternative to DGPS is to model and remove errors explicitly. Creating new
and robust models of phenomena that affect the GPS signal is an area of active
research at ARL:UT and other laboratories. The positioning algorithm can be
used to explore such models. Essentially, the basic approach is to turn the
positioning algorithm inside out to look at the corrections themselves. For
example, observations from a network of receivers can create a global map or
model of the ionosphere.

 Improved Ephemerides

The GPS position solution can be improved by using a better satellite
ephemeris. The US National Geospatial-Intelligence Agency (NGA) generates
and makes publicly available a number of precise ephemerides, which are
more accurate satellite orbits. Satellite orbits described by the broadcast

navigation message have an error on the order of meters, and the precise
ephemeris has decimeter accuracy. The International GPS Service (IGS) is a
global civil cooperative effort that also provides free precise ephemeris
products. Global networks of tracking stations produce the observations that
make generation of the precise ephemerides possible.

 GPS Data Sources

GPS observation data from many tracking stations are available freely on the
Internet. Many such stations contribute their data to the IGS. In addition, many
networks of stations also post their data to the Internet, such as the Australian
Regional GPS Network (ARGN) and global cooperatives including NASA's Crust
Dynamics Data Information System (CDIS).

 GPS File Formats

Typically, GPS observations are recorded in a standardized format developed
by and for researchers. Fundamental to this format is the idea that the data
should be independent of the type of receiver that collected it. For this reason,
the format is called receiver independent exchange, or RINEX. Another format
associated with GPS is SP-3, which records the precise ephemeris. The GPSTk
supports both RINEX and SP-3 formats.

 GPS Receivers and Open Source

GPS receivers have become less expensive and more capable over the years, in
particular handheld and mobile GPS receivers. The receivers have many
features in common. All of the receivers output a position solution every few
seconds. All receivers store a list of positions, called waypoints. Many can
display maps that can be uploaded. Many can communicate with a PC or
handheld to store information or provide position estimates to plotting
software.

Typically, communication with a PC and other system follows a standard
provided by the National Marine Electronics Association, called NMEA-0183.
NMEA-0183 defines an ASCII-based format for communication of position
solutions, waypoints and a variety of receiver diagnostics. Here is an example
of a line of NMEA data, or sentence:

$GPGLL,5133.81,N,00042.25,W*75

The data here is a latitude, longitude fix at 51° 33.81 min North, 0° 42.25 min
West. The last part is a checksum.

As a public standard, the NMEA-0183 format has given the user of GPS freedom
of choice. NMEA-0183 is the format most typically used by open-source
applications that use receiver-generated positions.

Closed standards also are common. SiRF is a proprietary protocol licensed to
receiver manufacturers. Many receiver manufacturers implement their own
binary protocols. Although some of these protocols have been opened to the
public, some have been reverse engineered. GPSBabel is an open-source
project to communicate with consumer-grade receivers. The Sharc Project is a
similar project to provide communication with survey-grade receivers.

A number of interesting open-source applications are available that utilize
consumer-grade receivers. With one, you can use open-source applications to
navigate in your car. The GPS Drive Project helps you do that, using a graphical
map. GPS Drive also can be linked to the Festival application to get driving
directions in the form of speech output. Internet sites such as WiGLE.net have
lists of the geographic coordinates of open wireless LANs; you can use your
GPS unit to find these.

Traditionally, DGPS is accomplished with two or more receivers that
communicate position information with radio waves. You can do DGPS over IP
now, using open-source applications. The open-source project called gpsd
essentially broadcasts NMEA-0183 sentences over TCP/IP. The gps3d Project,
which allows you to visualize your position and the configuration of GPS in 3-D,
also can utilize a gps3d server.

All of these applications are based on standard positioning. To move your
positioning capability to the next level, you have to work directly with the
observations made by the receiver. Only a few open-source or freely available
programs exist that give the user this freedom. OpenSourceGPS is a project to
create a GPS receiver based on the Zarlink chipset. teqc from UNAVCO
performs quality assurance and processes raw data from receivers to generate
RINEX, but it is closed source. In contrast, the purpose of the GPSTk is to give
the user the ability to manipulate not only GPS observations but also to
improve the processing algorithms.

 The GPS Toolkit

The GPS Toolkit (GPSTk) is coded entirely in ANSI C++. It is platform-
independent and has been built and tested on Linux, Solaris and Microsoft
Windows. Everything needed to write standalone, console-based programs is
included, along with several complete applications.

The design is highly object-oriented. Everything is contained in the namespace
gpstk::. For example, reading and writing a RINEX observation file is as simple
as this:

// open, read and re-write a RINEX file
using namespace gpstk;
// input file stream
RinexObsStream rin(inputfile);
// output file stream
RinexObsStream rout(outputfile,
ios::out|ios::trunc);
DayTime nextTime; //Date/time object
RinexObsHeader head; //RINEX header object
RinexObsData data; //RINEX data object

// read the RINEX header
rin >> head;
rout.header = rin.header;
rout << rout.header;

// loop over all data epochs
while (rin >> data) {
nextTime = data.time;
// change obs data&
rout << data;
}

The core capability of the library is built around RINEX file I/O. It also includes a
complete date and time class to manipulate time tags in GPS and many other
formats.

In addition to the RINEX I/O, GPSTk includes classes for handling geodetic
coordinates (latitude and longitude) and GPS ephemeris computations. There
also is a complete template-based Matrix and Vector package. And, of course,
there are GPS positioning and navigation algorithms, including several
tropospheric models.

Finally, several standalone programs are included in the distribution. Included
are utilities to validate or modify RINEX files, a summary program, a utility to
remove or modify observations, a phase discontinuity corrector and a program
to compute standard errors and corrections, such as the total electron content
(TEC) of the ionosphere along the signal path.

 Getting Started with the GPS Toolkit

The GPS Toolkit is available for download as a tarball (see the on-line Resources
section). To build the toolkit you need to use jam, a replacement for make, and
Doxygen, a source code documentation generator. The entire build sequence
looks like the following:

tar xvzf gpstk-1.0.tar.gz
cd gpstk
jam
doxygen

su
jam -sPREFIX=/usr install

This sequence builds and installs the GPSTk dynamic and shared libraries, as
well as the header files, in the /usr tree. In addition, a doc subdirectory is
created, containing HTML-based documentation of the GPSTk library.

Below are three example applications of the GPSTk created at ARL:UT. The
second example actually is distributed as an application with the GPSTk.

 Enhanced Positioning

Position solutions generated by the GPSTk provide improved precision and
robustness compared to those generated by a GPS receiver. Figure 2 illustrates
the benefits; each axis extends from –10 to 10 meters.

Figure 2. Left: positions from a GPS receiver. Right: positions generated using GPSTk
algorithms.

Plot A shows position computations and how they vary along the East and
North directions. Such results are representative of solutions created with a
consumer-grade GPS receiver. Plot B shows how the position estimate
improves when atmospheric delays are accounted for. Direct processing not
only improves precision, but it also increases robustness. Plot C shows the
effect of a faulty satellite. The faulty satellite is detected and removed using the
GPSTk in Plot D.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f2.large.jpg

 Carrier-Phase Discontinuity Correction

An important problem in GPS data processing involves discontinuities in the
carrier phase. Before phase data can be used, cycle slips must be found and
fixed. The GPSTk distribution includes an application called a discontinuity
corrector that does just that. This feature is available in the library as well.

The GPSTk discontinuity corrector works by forming two useful linear
combinations of the dual-frequency phase data, called the wide-lane phase bias
and the geometry-free phase. An example of these for normal data is shown in
Figure 3. The wide-lane bias (red) is noisy but has a constant average. The
geometry-free phase does not depend on the receiver-satellite geometry, but it
depends strongly on the ionospheric delay. In fact, it is proportional to that
delay. Normally, the ionosphere is quiet and smooth, but at times it can be
active and rough; then this quantity can vary wildly. The geometry-free phase
and the wide-lane noise increase at both ends of the dataset, because the
satellite is rising or setting there. Consequently, the signal must travel through
more atmosphere.

Figure 3. Normal wide-lane (red) and geometry-free (blue) phases for one satellite.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f4.large.jpg

Figure 4. Slip detected (blue circle) in the wide-lane data (green) where test quantity (dark
blue) is larger than limit (magenta).

The discontinuity corrector works by first looking for slips in the wide-lane
phase bias; Figure 4 illustrates a case in which it found one. When a slip in the
wide-lane slip is found, the code turns to the geometry-free phase and looks for
the slip there. To estimate the size of the slip, low-order polynomials are fit to
the data on each side of the slip, extrapolated to the point where the slip
occurred and then differenced.

Figure 5. Estimation of the Cycle Slip Size

https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f5.large.jpg

 Satellite Position Interpolation

Another GPSTk application at ARL:UT involves a satellite in low-earth orbit that
carries a GPS receiver. This satellite collects GPS data both for the satellites
above it, referred to as top-side data, and those visible below it, or bottom-side
data. The GPS signal for the bottom-side data has a long path length through
the atmosphere, which is ideal for remote sensing of the atmosphere. The top-
side data is used for computing the LEO satellite's rapidly changing position as
it orbits Earth. A problem arises here as the top-side data is collected with a
lower data rate (10 seconds) than on the bottom-side (1 second), yet the
position of the LEO satellite is needed for processing the bottom-side data at
the higher data rate. To solve the problem, a program was written, using only
GPSTk, which reads the GPS data, computes the LEO position with the top-side
data and then interpolates those positions to 1-second epochs. The result is
shown in Figure 6, a plot of the position of the LEO satellite as it orbits Earth.

Figure 6. Position Interpolation

 The Future of GPSTk

Open-source GPS processing, on the scale anticipated for the GPS Toolkit, is
unprecedented; we are excited by the prospect of what could develop. GPSTk
potentially has a broad range of audiences. Universities can use the GPSTk to
process GPS data with open-source code. Embedded developers can develop
software to perform GPS positioning and to read, write and edit RINEX data
files. Researchers may find that this code is an excellent foundation for GPS
receivers implemented entirely in software, called software receivers.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7467f6.large.jpg

Although the growth of the GPSTk will depend strongly on user feedback and
participation, changes also will be driven by shifts in the satellite navigation
arena. In the near term, the first satellite to provide dual-frequency
pseudoranges to civilians is scheduled for launch in 2005. Furthermore, the
European community is creating Galileo, which will provide a public-regulated
service compatible with GPS, essentially augmenting the current constellation
with a new one. In the long term, GPS will have new signals in the L5 and M
code. GPSTk, with its emphasis on fundamental observations, can provide the
basis to explore and exploit these changes.

It is our hope that university students, laboratory researchers, system
engineers and software developers will contribute to, as well as benefit from,
the GPS Toolkit. We already have seen many benefits to using this code within
our lab and believe that the GPSTk will inspire a number of innovative GPS
applications.

Resources for this article: /article/7651.

Dr Brian W. Tolman is a research scientist at Applied Research Laboratories,
The University of Texas, with 18 years experience in GPS-related research, data
analysis and software development. He holds a PhD in theoretical physics from
The University of Texas at Austin.

Ben Harris is an Engineering Scientist at UT Austin. When he is not researching
GPS, studying for a PhD or spending time with his beautiful family, he
reprograms animatronic fishes to perform scenes from Pulp Fiction.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7651.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Ximba Radio: Developing a GTK+/Glade GUI to XM

Satellite Radio

Michael J. Hammel

Issue #125, September 2004

They say Glade can make desktop application prototyping a quick and painless
process. To scratch my own itch with XM Satellite Radio on my PC, I decided to
see exactly how fast and painless.

As American TV slowly sinks into the abyss of fictional reality, you may find
yourself, like me, returning to the roots of electronic entertainment—radio.
Satellite radio is the latest incarnation of this medium, offering a wide range of
stations accessible from nearly anywhere you can drive your car.

Because I spend more of my time in front of a monitor than behind a steering
wheel, I was fortunate to find a PC-based solution for satellite radio. XMPCR is a
USB-connected receiver for the XM Radio satellite system that is sold primarily
for Microsoft Windows systems. The device is supported under Linux by the
OpenXM Project, a set of Perl scripts that acts as a network dæmon for
controlling the device. Unfortunately, the only user interface for the dæmon is a
limited text-based tool.

 A Preview of the Project Results

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f1.large.jpg

Figure 1. The main window, channels listings and preferences. The second version shows the
minimalist form, with the channel listings hidden.

Ximba Radio was born as a graphical front end to OpenXM. The application
provides a minimalist main window with current channel information that can
be expanded to show channel listings and user favorites. A button bar across
the top offers easy management of the radio and station navigation as well as
quick access to configuration options. The menu bar gives users the comfort of
a traditional desktop application.

Channel listings are shown in multiple formats. A main channel listing window
shows all channels, and category-specific tabs show related channels. Separate
tabs provide access to user-selectable artist and channel favorites along with a
current session history. Category tabs can be hidden using the Preferences
dialog, which also allows a user to set performance settings and favorites
notices.

On the back side of Ximba Radio is the OpenXM dæmon. This Perl script and
associated Perl module drive the connection to the USB port. The dæmon reads
from a configuration file or can take command-line arguments. Communication
with the dæmon occurs on a configurable TCP port with a list of acceptable
clients. The dæmon also can run on Windows systems.

 Design Goals

My goals for this application were to match the functionality of the Windows
version, provide a minimalist interface and be simple to configure. Also,
implementation would need to be completed in less than one man-week (40
hours).

https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f1.large.jpg

Another goal was to keep the user-interface code as independent of the
application code as possible. Application code should be able to be used with
any suitable user interface, so a good design could have a curses or Web
interface dropped on top with little additional work. This goal is in line with
GNOME development guidelines as well as future plans for Glade.

To meet these goals, I planned to use a single header file and a single C
module. To speed the implementation and solve some time-consuming
problems, I opted to use global variables. Remember, this is a prototype of a
simple desktop application, not an enterprise-ready 24/7 fault-tolerant
behemoth. If managed correctly, the use of globals can be removed with future
updates.

 Getting Familiar with Glade

With goals in hand, I started working with Glade to sculpt the user interface; I
cover specific code details in the next section. I configured Glade to generate C
code and took the default settings for everything else in the Options dialog.
Most important here are the source and header files that hold the user-
interface definitions (interface.c) and the widget callbacks (callbacks.c), along
with the option to generate a main.c file.

Glade generates a complete build environment for building an application. This
includes the source directory (src) and a directory for image files (pixmaps).
Image files used in GtkImage widgets need to be in .xpm format. Other
generated files include autoconf and automake templates and pot files for
internationalized strings.

Figure 2. The Options dialog for Glade allows you to generate code, specify filenames and
choose support for internationalized text.

Internationalization is optional and handled with GNU gettext support. The
interface.c file, for example, has gettext-enabled strings. Even with this option
enabled, you don't have to create pot files for any language; Glade simply uses
any text strings you provide as the default language.

I found that prototyping Ximba Radio with Glade required hand-editing only
two of the generated files, main.c and callbacks.c. The former required only
minor additions for initialization options related to configuration handling for
the application. The callbacks.c file was modified mostly to pass calls to my C
module, utils.c.

As I edited my project in Glade and regenerated the C code, the callbacks.c file
was appended with new functions. Fortunately, Glade does a good job of
knowing when a callback already exists and didn't destroy any of my changes.
Unfortunately, it sometimes re-adds an existing function. It was necessary to
pull out those extra functions manually from time to time. When using libGlade,
which processes the Glade XML file directly instead of using generated C code,
this problem does not exist. Discussion of libGlade is beyond the scope of this
article.

 UI Design with Glade

Ximba Radio required two primary windows, the Main Window and the
Preferences Dialog, and a number of secondary pop-up windows. The Main
Window's button bar was created with Glade's toolbar widget, and the buttons

were added to that manually. GTK+ buttons can have text or images. Glade
allows a choice of application images, stock buttons or stock icons. Stock
buttons use the same icons as stock icons except that tooltips are not available.
Because of this, I suggest using stock icons and leaving the stock button field
blank.

Figure 3. Glade's toolbar widget and the properties used to set icons in buttons inside a
toolbar.

Each button in the toolbar has a single callback function attached to the click
signal. The callback function can have any name and, if desired, be passed the
name of the widget itself as an argument. For callbacks attached to click signals,
the latter is not necessary. In callbacks attached to realize signals, which I
discuss in a moment, the widget name is passed to the function.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f3.large.jpg

Figure 4. Buttons in the toolbar have a single callback attached to the clicked signal.

I added three GtkImage widgets in the Main Window. The first is a State icon
positioned to the right of the Host name field. I set this to the Remove icon—
Glade offers many stock icons—to show no connection to the dæmon. To show
a connected state I used the Apply icon. In order to change the icon at runtime,
I saved the widget ID of this GtkImage in a realize callback. During normal use,
this icon also can be changed to the Off stock icon in order to show a
connected but muted state. I examine the code for handling these changes in
the next section.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f5.large.jpg

Figure 5. The State icon needs a realize callback to get the name of the widget so we can
update it at runtime.

The Favorites buttons are plus signs. Glade and GTK+ call these Add icons.
These buttons have a single callback attached to their click signal. The callback
adds the current artist or channel to the appropriate list of favorites. The menu
bar at the top of the main window was created using Glade's built-in Menu
Editor. The editor has many options, but for this project I used only the Label,
Name and Handler options, the latter to define the function to be called when
the menu item was selected.

Figure 6. Glade's Menu Editor offers many options, but only Label, Name and Handler are
necessary for our prototype.

A notebook widget provides access to the complete channel listings, as well as
category, favorite and session-specific listings. All of these are provided through
the CList widget. Glade fully supports this widget even though GTK+ prefers
that new code use the newer and more complex Tree and List widget. I cover
this controversial decision in more detail a little later.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f6.large.jpg

Figure 7. Glade fully supports the CList widget, which is preferred over the Tree and List
widget for simple list management.

 Coding Process

Glade generates empty functions for callbacks, often referred to as stub
functions. The stub functions make it possible to follow a simple process in
prototype development: design the UI, generate code, write callbacks, test and
repeat. I left most of the callback coding—aside from menu quit functions—
until after the UI was complete. Later, I went back and filled in the callbacks.
This methodology allowed me to experiment with the layout of the application
before having to get involved too deeply with what that layout actually would
do. Again, this is part of the whole goal of separating user-interface code from
application code. By keeping these two pieces separate, I allow future changes
to the UI to happen without serious impact on the core code. Callbacks are the
glue between the UI and the application code because they map UI events to
code that performs some action.

Callbacks have varying interfaces. Button click signals need callbacks that take
the button widget ID and user data as input arguments. CList callbacks for the
select-row signal, sent when a row is clicked on, get five arguments. Letting
Glade generate them makes it possible to learn these varying interfaces quickly.
In fact, because the API for callbacks is not well documented—at least
documentation is not easy to find—letting Glade create these is the best way to
learn callback syntax.

Filling in the callback code can be done directly in callbacks.c, but this C module
will be dropped in the future when I move to libGlade. Instead, I usually pass

https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f6.large.jpg

parameters straight through to a similar function in utils.c that does the actual
work. Despite this general rule, one important bit of code was put in
callbacks.c: assigning widget IDs to global variables. Listing 1 shows how a
global variable is used in a callback to save the ID of the Preferences dialog.

Listing 1. The Preferences dialog is created the first time it is requested, and the

widget ID is saved in a global variable.

void
XRPreferences (GtkButton *button,
 gpointer user_data)
{

 /* If it hasn't been opened before, create
 * the dialog.
 */

 if (XR_Preferences_Window == NULL)
 {
 XR_Preferences_Window = create_preferences();
 gtk_widget_realize(XR_Preferences_Window);
 }
 ...
}

Keeping track of individual widgets became necessary for multiple reasons.
First, some icons change dynamically depending on varying states of the
program. Second, many windows are displayed only temporarily and creating
and destroying them is overkill. It's far easier to create them once and then
simply hide and display them as needed. Finally, Glade-generated CLists need
to be updated at runtime. The variables that hold the widget IDs are scoped
only within the interface.c file, which means functions outside this Glade-
generated file can't make changes easily to those widgets.

To solve this problem I set a realize signal for every widget I need access to at
runtime. Glade lets you specify the name of the variable to be defined in
interface.c. The callback associated with the realize signal is passed that
variable value as the object parameter. In the callback, the value is saved in a
global variable defined in xr.h, the single header file I created for this project.
All globals are scoped using #ifdefs, with #defines specified at the top of the C
module, as shown in the two code snippets of Listings 2 and 3.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f8.large.jpg

Figure 8. Realize signals are used to pass the widget ID to a callback that saves the ID in a
global variable.

Listing 2. Global variables and functions are declared in xr.h.

code:
#ifdef XR_CB_C
GtkWidget *XR_Msg_Window = NULL;
GtkWidget *XR_Msg = NULL;
void XRUMsg();
void XRUInit();
#else
extern GtkWidget *XR_Msg_Window;
extern GtkWidget *XR_Msg;
extern void XRUMsg();
extern void XRUInit();
#endif

Listing 3. #defines make variables and functions properly accessible for C

modules.

code:
#define XR_UTIL_C
#include <stdio.h>
#include <stdlib.h>
#include "xr.h"
...

One problem with this methodology is defining at what point a widget ID
becomes available. The callback for the realize signal is called only right before
the widget actually becomes visible. Sometimes you need access to that widget

https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f8.large.jpg

ID before this happens. Fortunately, this is solved easily. The widget is created
in interface.c before the signal handlers are set up. A signal handler is a
function that associates a callback with some event.

Because of this, the locally named variables all have valid values by the time a
realize signal is configured. It therefore becomes possible to set multiple
callbacks for a single widget, all of which are set to the realize signal for that
widget, which saves the widget IDs of other widgets. For example, the main
window widget for Ximba Radio has realize callbacks set for it that save the
widget IDs of all the predefined CList widgets in the Channel Listing window;
there are four such widgets. This is required because, initially, those CLists are
not visible even after the main window is made visible, and I need to start
updating the lists right away. If I didn't use the main window to save the widget
IDs of the CLists, I wouldn't be able to start updating them with channel
information until those lists were displayed at least once.

Figure 9. Right before the main window is displayed, the widget IDs of its CList subwindows
are saved in global variables by multiple callbacks.

Dynamic changes to widgets also require saving the widget ID. One example of
this is the state icon for Ximba Radio. To change the state icon I needed to use
only GTK+ stock icons and save the widget ID of the Glade-generated GtkImage
widget. When the user changes the program state—either by disconnecting
from the dæmon or enabling or disabling the mute—the state icon is changed
easily with a single GTK+ function call, as shown in Listing 4. The complete set
of GTK+ stock icons is listed in the on-line GTK+ documentation.

Listing 4. This function changes the state icon to the connected state using what

GTK+ calls the Apply icon.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f9.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f9.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7487f9.large.jpg

code:
gtk_image_set_from_stock(GTK_IMAGE(XR_Status_Image),
 GTK_STOCK_APPLY,
 GTK_ICON_SIZE_BUTTON);

The use of global variables is not the only issue experienced developers might
take with my methodology. Another is my choice of using a deprecated GTK+
widget: the CList, also known as the columned list widget. Deprecated implies
that the widget, while still part of the current distribution, is no longer being
developed actively and may be removed from the GTK+ distribution in the
future.

The current replacement for the CList widget is the Tree and List widget. Ximba
Radio requires list entries to be added and removed dynamically on a frequent
basis. Neither the CList nor the Tree and List widget were helpful with this
requirement. However, because the CList was designed specifically for handling
lists and not expandable trees, I found it the less complex of the two choices.
By definition, prototypes require getting an application up and running quickly
with a standard or typical interface. CList support in Glade makes this possible
without having to learn the complexities of the Tree and List widget. The trade-
off will come later when I have to deal with the eventual disposition of the CList.

Ximba Radio makes heavy use of lists. All channel, category and favorites
information is kept in columned lists. While the complete channel listings and
the favorites are static lists that never go completely away, the category lists are
dynamic. Users can enable or disable them from the display, making it easier to
find stations based on their own preferences. To manage the dynamic nature
of the category lists, I made use of GLib's doubly linked list, the GList. Few
applications of any complexity can avoid the use of linked lists, and GLists are
extremely easy to use. A one-way link list option exists, the GSList, but it costs
little to have the two-way links in a GList, and reserving the option to travel in
both directions in a list is worth any extra weight a GList might add.

Listing 5. These two functions write preference data to a file, traversing a GList

to get category information.

code:
void
XRUSavePrefs()
{
 ...

 /* Write the preferences to it. */
 fprintf(fd, "hostname:%s\n", prefs.hostname);
 if (prefs.daemondir)
 fprintf(fd, "daemondir:%s\n",prefs.daemondir);
 else
 fprintf(fd, "daemondir:\n");
 fprintf(fd, "favorites:%d\n",
 (int)prefs.enable_favorites);
 fprintf(fd, "channels:%d\n",
 (int)prefs.channel_windows);
 fprintf(fd, "performance:%d\n",

 prefs.performance);

 /* Run the list of categories and save them
 * and their states
 */

 g_list_foreach(prefs.categories,
 SavePrefsCategory, fd);

 ...
}

static void
SavePrefsCategory(
 CatEntryT *catentry,
 FILE *fd
)
{
 fprintf(fd, "category:%s:%d\n", catentry->name,
 catentry->state);
}

One other pitfall to avoid comes with testing your application if you use
pixmaps. Ximba Radio uses a logo pixmap in several places. The pixmap is not
found if you run the application from the default src directory unless you first
do a complete build:

./configure --prefix=<install directory>
make
make install

This process copies over pixmaps to a pixmap directory under the install
directory prefix. For example, if <install directory> is set to /usr/local/
ximbaradio, the pixmaps are installed in /usr/local/ximbaradio/share/
ximbaradio/pixmaps. Once installed, the compiled program finds the pixmaps
correctly. If the pixmaps are updated, the make install step needs to be rerun.
Switching to compiled logos—that is, making them part of the binary so
relocation issues are not relevant—is possible with modifications to the
support.c file. I've done this for previous applications, but the technique is
beyond the scope of this article.

 Final Analysis

I managed to get the complete application written in approximately 30 hours of
total work. Most of that was spent on core code. UI code was completed in
perhaps ten hours of total work. The application matches the Windows UI in all
major features and the Preferences are easy to manage. The UI code is
independent of the core code, although some dependency on the callbacks.c
file still is present.

Development of Ximba Radio continues. Plans include adding audio control
options and a GStreamer-based reflector. The reflector, Ximba Radio and
OpenXM will combine to allow remote access to PC-based XM Radio satellite
service.

Glade 3 is under development, and it's expected that the code generation
feature will be removed. Because this upcoming release has been long in
development and its release does not appear to be close to the horizon,
working with generated code remains a viable option for Glade-built prototypes
for the near future. That said, prototype development does remain fast and
painless with GTK+ and Glade.

Michael J. Hammel is a software engineer and author living in Houston, Texas,
with his wife, Brinda, and daughter, Ryann. An avid runner and tennis player,
who loves his dogs Reba and Bailey as much as he loves his computer, Michael
spends his spare time nursing aging knees, cleaning up torn sofa cushions and
asking himself why he doesn't have any spare time. His Web site is graphics-
muse.com, and he can be reached at mjhammel@graphics-muse.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://graphics-muse.com
http://graphics-muse.com
mailto:mjhammel@graphics-muse.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Ten Commands Every Linux Developer Should Know

John Fusco

Issue #125, September 2004

A few simple utilities can make it easier to figure out and maintain other
people's code.

This article presents a list of commands you should be able to find on any Linux
installation. These are tools to help you improve your code and be more
productive. The list comes from my own experience as a programmer and
includes tools I've come to rely on repeatedly. Some tools help create code,
some help debug code and some help reverse engineer code that's been
dumped in your lap.

 1. ctags

Those of you addicted to integrated development environments (IDEs) probably
never heard of this tool, or if you did you probably think it's obsolete. But a
tags-aware editor is a productive programming tool.

Tagging your code allows editors like vi and Emacs to treat your code like
hypertext (Figure 1). Each object in your code becomes hyperlinked to its
definition. For example, if you are browsing code in vi and want to know where
the variable foo was defined, type :ta foo. If your cursor is pointing to the
variable, simply use Ctrl-right bracket.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/125/7330f1.large.jpg

Figure 1. gvim at Work with Tags

The good news for the vi-impaired is ctags is not only for C and vi anymore. The
GNU version of ctags produces tags that can be used with Emacs and many
other editors that recognize tag files. In addition, ctags recognizes many
languages other than C and C++, including Perl and Python, and even hardware
design languages, such as Verilog. It even can produce a human-readable cross-
reference that can be useful for understanding code and performing metrics.
Even if you're not interested in using ctags in your editor, you might want to
check out the human-readable cross-reference by typing ctags -x *.c*.

What I like about this tool is that you get useful information whether you input
one file or one hundred files, unlike many IDEs that aren't useful unless they
can see your entire application. It's not a program checker, so garbage in,
garbage out (GIGO) rules apply.

 2. strace

strace lets you decipher what's going on when you have no debugger nor the
source code. One of my pet peeves is a program that doesn't start and doesn't
tell you why. Perhaps a required file is missing or has the wrong permissions.
strace can tell you what the program is doing right up to the point where it
exits. It can tell you what system calls the program is using and whether they
pass or fail. It even can follow forks.

strace often gives me answers much more quickly than a debugger, especially if
the code is unfamiliar. On occasion, I have to debug code on a live system with
no debugger. A quick run with strace sometimes can avoid patching the system

https://secure2.linuxjournal.com/ljarchive/LJ/125/7330f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7330f1.large.jpg

or littering my code with printfs. Here is a trivial example of me as an
unprivileged user trying to delete a protected file:

strace -o strace.out rm -f /etc/yp.conf

The output shows where things went wrong:

lstat64("/etc/yp.conf", {st_mode=S_IFREG|0644,
st_size=361, ...}) = 0
access("/etc/yp.conf", W_OK) = -1 EACCES
(Permission denied)
unlink("/etc/yp.conf") = -1 EACCES (Permission
denied)

strace also lets you attach to processes for just-in-time debugging. Suppose a
process seems to be spending a lot of time doing nothing. A quick way to find
out what is going on is to type strace -c -p mypid. After a second or two,
press Ctrl-C and you might see a dump something like this:

% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 91.31 0.480456 3457 139 poll
 6.66 0.035025 361 97 write
 0.91 0.004794 16 304 futex
 0.52 0.002741 14 203 read
 0.31 0.001652 3 533 gettimeofday
 0.26 0.001361 4 374 ioctl
 0.01 0.000075 8 10 brk
 0.01 0.000064 64 1 clone
 0.00 0.000026 26 1 stat64
 0.00 0.000007 7 1 uname
 0.00 0.000005 5 1 sched_get_priority_max
 0.00 0.000002 2 1 sched_get_priority_min
------ ----------- ----------- --------- --------- ----------------
100.00 0.526208 1665 total

In this case, it's spending most of its time in the poll system call—probably
waiting on a socket.

 3. fuser

The name is a mnemonic for file user and tells what processes have opened a
given file. It also can send a signal to all those processes for you. Suppose you
want to delete a file but can't because some program has it open and won't
close it. Instead of rebooting, type fuser -k myfile. This sends a SIGTERM
to every process that has myfile opened.

Perhaps you need to kill a process that forked itself all over the place,
intentionally or otherwise. An unenlightened programmer might type
something like ps | grep myprogram. This inevitably would be followed by
several cut-and-paste operations with the mouse. An easier way is to type
fuser -k ./myprogram, where myprogram is the pathname of the
executable. fuser typically is located in /sbin, which generally is reserved for

system administrative tools. You can add /usr/sbin and /sbin to the end of your
$PATH.

 4. ps

ps is used to find process status, but many people don't realize it also can be a
powerful debugging tool. To get at these features, use the -o option, which lets
you access many details of your processes, including CPU usage, virtual
memory usage, current state and much more. Many of these options are
defined in the POSIX standard, so they work across platforms.

To look at your running commands by pid and process state, type ps -e -o
pid,state,cmd. The output looks like this:

4576 S /opt/OpenOffice.org1.1.0/program/soffice.bin -writer
4618 D dd if /dev/cdrom of /dev/null
4619 S bash
4645 R ps -e -o pid,state,cmd

Here you can see my dd command is in an uninterruptible sleep (state D).
Basically, it is blocking while waiting for /dev/cdrom. My OpenOffice.org writer
is sleeping (state S) while I type my example, and my ps command is running
(state R).

For an idea of how a running program is performing, type:

ps -o start,time,etime -p mypid

This shows the basic output from the time command, discussed later, except
you don't have to wait until your program is finished.

Most of the information that ps produces is available from the /proc filesystem,
but if you are writing a script, using ps is more portable. You never know when
a minor kernel rev will break all of your scripts that are mining the /proc
filesystem. Use ps instead.

 5. time

The time command is useful for understanding your code's performance. The
most basic output consists of real, user and system time. Intuitively, real time is
the amount of time between when the code started and when it exited. User
time and system time are the amount of time spent executing application code
versus kernel code, respectively.

Two flavors of the time command are available. The shell has a built-in version
that tells you only scheduler information. A version in /usr/bin includes more
information and allows you to format the output. You easily can override the

built-in time command by preceding it with a backslash, as in the examples that
follow.

A basic knowledge of the Linux scheduler is helpful in interpreting the output,
but this tool also is helpful for learning how the scheduler works. For example,
the real time of a process typically is larger than the sum of the user and
system time. Time spent blocking in a system call does not count against the
process, because the scheduler is free to schedule other processes during this
time. The following sleep command takes one second to execute but takes no
measurable system or user time:

\time -p sleep 1
real 1.03
user 0.00
sys 0.00

The next example shows how a task can spend all of its time in user space.
Here, Perl calls the log() function in a loop, which requires nothing from the
kernel:

\time perl -e 'log(2.0) foreach(0..0x100000)'
real 0.40
user 0.20
sys 0.00

This example shows a process using a lot of memory:

\time perl -e '$x = 'a' x 0x1000000'

0.06user 0.12system 0:00.22elapsed 81%CPU
(0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (309major+8235minor)pagefaults
0swaps

The useful information here is listed as pagefaults. Although the GNU time
command advertises a lot of information, the 2.4 series of the Linux kernel
stores only major and minor page-fault information. A major page fault is one
that requires I/O; a minor page fault does not.

 6. nm

This command allows you to retrieve information on symbol names inside an
object file or executable file. By default, the output gives you a symbol name
and its virtual address. What good is that? Suppose you are compiling code and
the compiler complains that you have an unresolved symbol _foo. You search
all of your source code and cannot find anywhere where you use this symbol.
Perhaps it got pulled in from some template or a macro buried in one of the
dozens of include files that compiled along with your code. The command:

nm -guA *.o | grep foo

shows all the modules that refer to foo. If you want to find out what library
defines foo, simply use:

nm -gA /usr/lib/* | grep foo

The nm command also understands how to demangle C++ names, which can
be handy when mixing C and C++. For example, forgetting to declare a C
function with extern"C" produces a link time error something like this:

undefined reference to `cfunc(char*)'

In a large project with poorly defined headers, you might have a hard time
tracking down the offending module. In this case, you can look for all the
unresolved symbols in each object file with demangling turned on as follows:

nm -guC *.o
extern-c.o:cfunc
no-extern-c.o:cfunc(char*)

The first module is correct; the second is not.

 7. strings

This command looks for ASCII strings embedded in binary files. It can be used
for good or for evil. The good uses include trying to figure out what library is
producing that cryptic string on stdout every once in a while, for example:

strings -f /usr/lib/lib* | grep "cryptic message"

On the evil side, the character strings can be used to probe your format strings
looking for clues and vulnerabilities. This is why you should never put
passwords and logins in your programs. It might be wise to examine your own
programs with this tool and see what a clever programmer can see. The version
of strings that comes with the GNU binutils has many useful options.

 8. od, xxd

These two commands do basically the same thing, but each offers slightly
different features. od is used to convert a binary file to whatever format you
like. When dealing with programs that generate raw binary files, od can be
indispensable. Although the name stands for octal dump, it can dump data in
decimal and hexadecimal as well. od dumps integers, IEEE floats or plain bytes.
When looking at multibyte integers or floats, the host byte order affects the
output.

xxd also dumps binary files but does not try to interpret them as integers or
floats, so the host byte order does not affect the output, which can be
confusing or helpful depending on the file. Let's create a four-byte file on an
Intel machine:

$ echo -n abcd > foo.bin
$ od -tx4 foo.bin
0000000 64636261
0000004

$ xxd -g4 foo.bin
0000000: 61626364 abcd

The output of od is a byte-swapped 32-bit integer, and the output of xxd is a
group of four bytes in the same byte order as they appear in the file. If you're
looking for the string abcd, xxd is the command for you. But, if you're looking
for the 32-bit number 0x64636261, od is the right command.

xxd also knows a few cool tricks that od doesn't, including the ability to format
the output in binary and to translate a binary file into a C array. Suppose you
have a binary file that you want to encode inside an array in your C program.
One way to do this is by creating a text file as follows:

$ xxd -i foo.bin

unsigned char foo_bin[] = {
 0x61, 0x62, 0x63, 0x64
};

unsigned int foo_bin_len = 4;

 9. file

UNIX and Linux have never enforced any policy of filename extensions. Naming
conventions have evolved, but they are guidelines, not policies. If you want to
name your digital picture image00.exe, go ahead. Your Linux photo application
gladly accepts the file no matter what the name is, although it may be hard to
remember.

The file command can help when you have to retrieve a file from a brain-dead
Web browser, which mangles the name—say a file that should have been
named foo.bar.hello.world.tar.gz comes out as foo.bar. The file command can
help like this:

$ file foo.bar

foo.bar: gzip compressed data,
was "foo.bar.hello.world.tar", from Unix

Perhaps you received a distribution with a bin directory full of dozens of files,
some of which are executables and some are scripts. Suppose you want to pick
out all the shell scripts. Try this:

$ file /usr/sbin/* | grep script

/usr/sbin/makewhatis: a /bin/bash script text
executable

/usr/sbin/xconv.pl: a /usr/bin/perl script
text executable

The file command identifies all the files in the bin directory, and the grep
command filters out everything not a script. Here are some more examples:

file core.4867

core.4867: ELF 32-bit LSB core file Intel 80386,
version 1 (SYSV), SVR4-style, from 'abort'

file /boot/initrd-2.4.20-6.img

/boot/initrd-2.4.20-6.img: gzip compressed data,
from Unix, max compression

file -z /boot/initrd-2.4.20-6.img

/boot/initrd-2.4.20-6.img: Linux rev 1.0 ext2
filesystem data (gzip compressed data, from Unix,
max compression)

Just as you shouldn't judge a book by its cover, you shouldn't assume the
contents of a file based on its name.

 10. objdump

This is a more advanced tool and is not for the faint of heart. It's sort of a data-
mining tool for object files. A treasure trove of information is encoded inside
your object code, and this tool lets you see it. One useful thing this tool can do
is dump assembly code mixed with source lines, something gcc -S doesn't do
for some reason. Your object code must be compiled with debug (-g) for this to
work:

objdump --demangle --source myobject.o

objdump also can help extract binary data from a core file for postmortem
debug when you don't have access to a debugger. A complete example is too
long for this article, but you need the virtual address from nm or obdump -t.
Then, you can dump the file offsets for each virtual address with objdump -x.
Finally, objdump is able to read from non-ELF file formats that gdb and other
tools can't touch.

This article is not intended as a definitive reference but as a starting point to
help you become more productive. Each one of these commands is well
documented in the Linux man and info pages. Consult them for more
information and more ideas.

Resources for this article: /article/7658.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7658.html

John Fusco is a software developer with General Electric Healthcare (formerly
GE Medical Systems), where he designs Linux software and device drivers for
GE's Lightspeed series of Computed Tomography scanners
(www.gemedicalsystems.com/rad/ct/products/light_series/index.html).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.gemedicalsystems.com/rad/ct/products/light_series/index.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 LDAP Account Manager

John H. Terpstra

Issue #125, September 2004

If you want to give your company's Microsoft admins the ability to do routine
user management on the Samba server, try this well designed Web-based tool.

The LDAP Account Manager (LAM) is an application suite for managing POSIX
accounts as well as Samba SAM accounts for users, groups and Microsoft
Windows machines. LAM can be used with any Web server that has PHP4
support. It connects to the LDAP server using either unencrypted connections
or SSL.

LAM is written in PHP and is available from the LAM home page,
sourceforge.net/projects/lam, under the GNU GPL. The default password is
lam. You should use only an SSL connection to your Web server for all remote
operations involving LAM. If you want secure connections, you must configure
your Apache Web server to permit connections to LAM using only SSL.

LAM requirements are as follows:

• A Web server that works with PHP4.
• PHP4 (available from the PHP home page, www.php.net).
• OpenLDAP 2.0 or later.
• A Web browser that supports CSS.
• Perl.
• The gettext package.
• mcrypt+mhash.
• SSL support—not necessary, but good to have.

Installation instructions are provided in the distribution tarball and are easy to
follow. When you have installed LAM, start your Web server, and then, using
your Web browser, connect to the LAM URL. Click the Configuration Login link
and then the Configuration Wizard link to begin executing the default profile.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://sourceforge.net/projects/lam
http://www.php.net

Your LDAP server needs to be running at the time LAM is configured. This
permits you to validate correct operations.

Figure 1. Part of the LAM Configuration Page

Alternately, copy the lam.conf_sample file in the config directory to lam.conf.
Then, using your favorite editor, change the settings to match local site needs.
The comments and help information provided in the profile file the wizard
creates are useful and can help many administrators avoid pitfalls.

The LAM configuration editor has a number of options that must be managed
correctly (Figure 1), such as setting the minimum and maximum UID/GID values
permitted for use on your site. The default values may not be compatible with a
need to modify initial default account values for well-known Windows network
users and groups. The best work-around is to set the minimum values to zero
(0) temporarily to permit the initial settings to be made. Do not forget to reset
these to sensible values before using LAM to add additional users and groups.

LAM is not without its oddities. For example, one unexpected feature present
on most application screens permits the generation of a PDF file that
summarizes configuration information. This is a well-thought-out facility.

When you log in to LAM, the opening screen drops you into the user manager
(Figure 2), a logical action that permits the most common facility to be used
immediately. The process of editing an existing user, as well as adding a new
user, is easy to follow and clearly expressed in both layout and intent. It is a

https://secure2.linuxjournal.com/ljarchive/LJ/125/7382f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7382f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7382f1.large.jpg

simple matter to edit generic settings, UNIX standard parameters and then
Samba account requirements. Each step involves clicking a button that drives
you through the process. When you have finished editing, simply click the Final
button.

Figure 2. LAM opens at the most commonly used task, the user manager.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7382f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7382f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7382f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7382f3.large.jpg

Figure 3. LAM makes it easy to manage Windows domain members.

As with the edit screen for user accounts, group accounts can be dealt with
rapidly. Host accounts are managed automatically using the smbldap-tools
scripts. This means the Hosts edit screen (Figure 3) is not used in most cases.

One aspect of LAM that might annoy users is the way it forces conventions on
the administrator. For example, LAM does not permit the creation of Windows
user and group accounts that contain uppercase characters or spaces, even
though the underlying operating system may have no problems with them.
Given the propensity for using uppercase characters and spaces (particularly in
the default Windows account names), this lack may cause some annoyance. For
the rest, LAM is a useful administrative tool.

John H. Terpstra is CTO of PrimaStasys, Inc., a company that mentors
organizations in alternative information technology choice evaluation and
facilitates profitable change in practices. He is a long-term member of the
Samba-Team, a member of the Open Source Software Institute Advisory Board
and author of The Official Samba-3 HOWTO and Reference Guide and Samba-3
by Example.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7382f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7382f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Space-Time Processing—Linux Style

Ian McLoughlin

Tom Scott

Issue #125, September 2004

Developing a new generation of wireless communications means you need
FPGA development tools, a cluster for simulation and an embedded OS for
prototype devices. Linux fits the need.

Here at Tait Electronics Group Research in Christchurch, New Zealand, we
quietly have been building an advanced wireless networking concept called
space-time (ST) processing. ST is predicted by many to drive the next big-step
improvement in wireless technology after 3G. The nature of space-time is that
the mathematics behind it and, consequently, its implementation, are
extremely complex. Many academic researchers are working on this, but we
have completed two world-first practical implementations on our ST array
research (STAR) platform. These are time-reversal space-time block coding (TR-
STBC) and the tongue-twisting single carrier, adaptive multivariate decision
feedback equalised multiple-in, multiple-out (SC-AMV-DFE-MIMO) coding
scheme. Without a doubt, these achievements were possible largely thanks to
the performance and adaptability of Linux.

This article describes how Linux was key in enabling our mathematical
simulations and was adopted for our embedded processing and runtime
control. We cover such diverse aspects as message passing interface (MPI),
cluster computing, embedded Linux, PHP, shell scripts, network filesystem
(NFS), SMB (server message block) and kernel modules on ARM, Alpha and Intel
architecture computers. We skip development details, but describe the system
as it operates today, highlighting some of the real advantages we gained by
using Linux.

In its basic configuration, each STAR platform consists of one multichannel
transmitter unit and one multichannel receiver unit, both connected to a
shared LAN and transmitting anything up to around 200Mb/s at microwave

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

frequencies. There actually are 23 printed circuit boards in each unit, which
took 15 people a year to design and build.

Figure 1. A bidirectional RF link uses one multichannel transmitter and one multichannel
receiver on each STAR platform.

Figure 1 shows the system wired to a shared Ethernet as a bidirectional RF link.
The setup shown is for experimental purposes; an actual product would not
have a shared Ethernet between transmitter and receiver.

All of the clever radio processing is done on the digital board, not by the ARM
processor but by a dedicated field programmable gate array (FPGA) and digital
signal processor (DSP). We call FPGA code firmware because we can't decide
whether it's software or hardware; this way we don't have to comply with either
the software coding standards or the hardware design standards of the
company. In the middle of last year, when we designed the system, we used the
biggest, fastest and most expensive FPGA and DSP we could obtain, and we
since have added two more big FPGAs. The ARM is not used for low-level
processing because we require over 50,000MIPS for ST processing. With this
complexity, even the fastest components alone are not enough, so we decided
early on to build a multiprocessor-capable system.

STAR units are extensible through high-speed low-voltage differential signaling
(LVDS) connections that run at up to 1Gb/s. Each board has two sets of five-
channel bidirectional LVDS interconnects to link two neighbouring boards. At
the same time, each board is wired to Ethernet. High-speed data travels over
LVDS, and control data uses Ethernet.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7386f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7386f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7386f1.large.jpg

 Development

Most processing occurs in the FPGA, coded in VHDL. A growing number of
VHDL tools are available for Linux (see sidebar), and we used Quartus from
Altera. In our system, we developed algorithms first with GNU-Octave and then
ported them to VHDL. Octave and the mostly compatible MATLAB are available
for Linux and Microsoft Windows, but Octave has an MPI-enabled version that
runs on clusters. We compiled this for a cluster of old DEC Alphas we call zion.
MPI-Octave really screams on zion despite the fact that the fastest CPU is only
500MHz.

For our digital board, we used an ARM Linux toolchain from handhelds.org to
compile freshly patched 2.4.18 kernel sources. Russell King began ARM Linux
when working on a distribution for Acorn computers in the early 1990s. Now,
ARM is one of the best-supported processors under Linux and is a real joy to
us. Three days was enough to port Linux to our custom hardware, although the
Ethernet driver took a couple more days to complete. ARM is easily the world's
number one processor by sales, with a huge amount of support for running
Linux. This led Tait Electronics to commit to ARM processors in our future
processor road map.

With ARM Linux booting, it was time for a RAM disk. Having 16MB of SDRAM
and 2MB of Flash memory on the ARM, we opted for a maximum compressed
kernel and RAM disk size of 1,024K each, although the uncompressed RAM disk
is 4MB in size. Both are stored in Flash and allow booting without external
interaction.

We opted to use BusyBox for common tools, including ls, cd, mount, insmod
and ping, and TinyLogin for login and password support. Other onboard
utilities handle memory-mapped peripherals and Flash, and netkit-base
provides a telnet dæmon that uses TinyLogin functions. Tait Electronics bought
a range of MAC addresses from the IEEE to support its Linux-on-ARM
development programme, and the MAC address for each board is held in Flash
memory.

Figure 2. Each unit has both a Flash-based and a RAM-based filesystem.

We developed many small applications and even got the Abyss Web server
running, but these all can't fit into Flash. We therefore NFS-mount a directory
from the zion mainframe to each ARM, accessing many gigabytes of extra
space. Figure 2 shows the filesystem arrangement.

We also set up SMB mounts to users' shared drives from zion, accessible to the
ARM boards over NFS. If a Web server is run on the ARM boards, we end up
with a highly interlinked system. Windows users can access part of their own
local drivespace through the Web served by way of an embedded ARM board
linked over NFS to a remote cluster server.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7386f3.large.jpg

Figure 3. The Filesystem Tree as Seen from the Unit

 Zion

In late 2001, we obtained the old DEC Alphas (described as boat anchors) and
decided to see what we could do with them. First, we modified the built-in
bootloader to get Red Hat 7.1 running. We made two major changes. First, we
chose one master machine and loaded up its SCSI interface with six hard disks
and a DVD-ROM. Five disks became a level-5 RAID array (using raidtools) to
store simulation or experimental data, and the remaining disk is for booting
and recovery.

The second change was to install the MPI on all machines. Although installation
was fairly easy, the need to derive all IP addresses through DHCP caused
problems. In the end, we negotiated a fixed IP address for the master machine,
now called zion. We run startup scripts on other machines that log their IP
addresses onto an SMB mount using RPC (Listing 1).

Listing 1. Script to store a cluster node's IP address on an SMB share.

#!/bin/sh
#
Write my IP to an SMB share
#
#Mount central SMB share
smbmount //foo/bar /mnt/bar \
 -o username=me,password=mine >& \
 /dev/null#Write IP
#Grab IP address from ifconfig
address/sbin/ifconfig | grep Bcast \
 | sed 's/^.*addr://;s/Bcast.*//' > \
 /mnt/bar/$HOSTNAME.ip

Once MPI was working, we downloaded the latest Octave source and patched it
with Octave-MPI. Since then, Octave-MPI seems to have been taken over by

https://secure2.linuxjournal.com/ljarchive/LJ/125/7386f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7386f3.large.jpg

Transient Research (see the on-line Resources section). We set up our MPI
system with a script that gathers the IP addresses stored by the script above,
pings them and builds an rhosts file. Once dynamic generation of rhosts is
complete, we simply run Octave-MPI over 4+1 machines with:

recon -v
lamboot
mpirun -v -c4 octave-mpi

With the system running, the Octave processing load can be shared across the
cluster. We find that Alphas have significantly faster floating-point performance
than do Pentiums, but using Ethernet to pass MPI messages slows the cluster
down. We haven't benchmarked the system, but a simulation that takes a
couple of hours to complete on a 2GHz Compaq PC runs about 10% faster on
our first cluster of four Alphas (300MHz–500MHz).

We found GNU-Octave to be an excellent tool for numerical simulations. When
executed with the -traditional option, also known as -braindead, it runs most
MATLAB scripts. In some cases, Octave provides better features than MATLAB
does, although MATLAB has a better plotting capability than the default gnuplot
engine Octave uses.

Some engineers prefer to develop on Windows, so we provide a Web interface
to MPI-Octave. It uses a JavaScript telnet client served from Apache on zion and
some back-end scripting. Scripts were adapted from an on-line MUD game
engine. For Windows users, the telnet client script automatically mounts their
shared Windows drives on the zion filesystem, runs Octave over telnet and sets
up plotting capabilities so that plots are written to a directory on the Web
server in PNG format for displaying with a browser. Another option lets users
save plots directly to their shared drives.

For debugging, a large debug buffer in the FPGA is accessible to the ARM. We
memory-mapped the FPGA with 32-bit high-speed asynchronous access to the
ARM, with access in userland or kernel space. Unsurprisingly, in kernel space
we use a character driver module accessed as a file. This bursts up to 1,024
data words at high speed and handles all signaling, although the sustained
speed is not so good. Userland access is accomplished through the neat
method of mmapping to the /dev/mem interface, as long as you remember to
create /dev/mem on your embedded filesystem first (Listing 2).

Listing 2. writeport.c: a simple program that writes a 32-bit integer to a physical

memory location.

#include <stdio.h>
#include <fcntl.h> //needed for O_RDWR and O_SYNC
#include <sys/mman.h> //needed for PROT_READ etc.

#define GRAB_SIZE 1024UL
#define GRAB_MASK (GRAB_SIZE - 1)

int main(int argc, char **argv)
{
 void *grab_base, *virt_addr;
 unsigned int md, read_result, writeval;
 off_t phys_addr = strtoul(argv[1], 0, 0);
 /*open memory interface*/
 if((md = open("/dev/mem", O_RDWR | O_SYNC)) == -1)
 {
 printf("ERR - /dev/mem open failed\n");
 exit(1);
 }
 /* Map one page to the physical address given*/
 if(grab_base = mmap(0, GRAB_SIZE, PROT_READ |
 PROT_WRITE, MAP_SHARED, md, phys_addr &
 ~GRAB_MASK), grab_base == (void *) -1)
 {
 printf("ERROR: failed to map\n");
 exit(1);
 }
 /*write to virtual memory that is now mapped to
 the requested physical address*/
 *((unsigned long *)grab_base + (phys_addr &
 GRAB_MASK)) = strtoul(argv[2], 0, 0);
 /*close memory interface*/
 if(munmap(grab_base, GRAB_SIZE) == -1)
 {
 printf("ERR - unmap failed\n");
 exit(1);
 }
 close(md);
}

These tools allow us to upload known test vectors, saved from Octave on zion,
to the debug buffer. Under ARM control, we route the debug buffer output to
the input of a block under test, run the system for a few clock cycles and
capture the output back in the debug buffer. Analysing the result in Octave tells
us if the block works.

Figure 4. Visualising Channel Modes—The Complex Paths from Transmitter to Receiver

https://secure2.linuxjournal.com/ljarchive/LJ/125/7386f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7386f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7386f4.large.jpg

We found visualisation to be an important factor. After our first milestone, we
invited some people to see the system. They saw boxes humming away with a
couple of green LEDs to indicate everything was working. We noted a distinct
lack of enthusiasm at what we believe was a world-first demonstration of the
technology, so we realised something more was required. To this end, we
chose to display channel models as they adapted in near real time. A channel is
the complex path from a transmitter to a receiver, including reflections,
multiple paths, dispersion and so on. The system we built sent training symbols
over the air to sound the channel before sending data. Sounding gives us a
picture of the channel, which we decided to display. We used the FPGA debug
buffer on the receiver, with an ARM script running periodically to execute a
program to extract the channel data from the buffer, format it and save in an
Octave-compatible .mat file on zion. Octave was run non-interactively on zion
to read the channel data periodically, analyse it and generate four plots as PNG
image files, which a zion Web server PHP page displayed as a visualisation
updated every four seconds (Figure 4).

 Support

Our Linux-powered digital boards normally run complex processing algorithms
and communicate over air and Ethernet to other systems. Even under
laboratory conditions, it is difficult to know whether all components are
operating correctly, so we decided to utilise the power of Linux to implement
self-test and monitoring solutions. Like our visualisations, this ties many
components together in a flexible way.

Nontechnical users demanded a graphical interface, which we could have
created using GTK, Tk, Qt or something similar, but we decided instead on PHP-
powered Web scripting. This allows users of all platforms to access the system.
The C-like language syntax makes it easy and quick to use for C programmers,
and the familiarity of modern users with Web interfaces helps. The source code
for most applications is less than 50KB in size, which is a major advantage in
debugging and testing and consequently improves our confidence in that code.

Unfortunately, such a user interface has a couple of disadvantages: first, when
a background event must be brought to the attention of a user and, second,
when the system must interact directly with hardware. The first problem can be
solved through the use of ticker-type messages in a separate frame. In our
system, we solved the second problem through the use of small low-level C
programs with a file-based interface to PHP.

In truth, our system is quite convoluted. The controller in each unit is the ARM
processor, but the controller for all controllers in a multi-unit system is the Web
server serving the PHP scripts. For self-tests, the system implements a
repetitive monitor script running on each ARM every five seconds and

interrogates the system for the Web server. Details are written to a file named
after the IP address of the Ethernet on each ARM. The monitor script also is
responsible for ensuring that each operational system is synchronised in time
to zion. We didn't use NTP due to code size and because we require sufficient
time resolution only to prevent shared filesystem time consistency errors. We
script zion to write the current time and date, using the date command, to the
file every five seconds, and each ARM reads that file every five seconds to set its
time. This gets around time synchronisation problems and fixes timestamps on
files. We also use it as a watchdog to reset boards more than a minute out of
date.

Apart from self-tests, the script also queries version numbers of RAM disk and
kernel on startup and writes this to a status file. A final use of the script is to
execute board-specific instructions. These are written by the PHP control Web
page to tell each ARM board what it should be doing. Instructions from PHP are
written as a shell script to be executed by a single board, identified by IP
address.

All units run identical kernels and RAM disks stored locally in Flash memory and
verified against master copies on zion at startup. Any inconsistency causes the
correct kernel or RAM disk to be burnt into the local Flash memory. We built
custom Flash memory tools to do this. In practice, we have had no storage
errors, but we use this to roll out new versions of kernel and RAM disk without
user intervention.

The PHP Web pages refresh every five seconds using the autoload HTML tag. Of
course, this works only if at least one user has a browser currently viewing the
page. If not, the information probably isn't required anyway. A manager's-eye-
view Web page hides almost all useful information but looks great. Real users
can click down through the levels to get to individual scripts that customise
each board.

 Debugging and Monitoring

Linux software on the ARM sets up FPGA firmware to stream small packets of
data from the wireless system to a debug buffer in the FPGA. In slower time,
the ARM extracts this and stores it on zion. These files can be analysed
automatically to look for faults (like all 0s) and if found, the user is alerted
through the Web pages.

 Conclusion

We recently have started to think about products rather than pure research. It
is likely that we will communicate IP packets and some form of embedded
Linux will power the product. This will happen not only because we relied upon

it during development, but there are few viable options for handling IP packets.
WinCE is slow and bloated, and VxWorks is lean but costly and lacks in protocol
support.

Tait Electronics is a nonprofit electronics trust run to benefit the employees and
society of Christchurch, New Zealand. It was founded by Sir Angus Tait more
than 30 years ago. It exports 97% of its mobile radio products to more than 200
countries worldwide.

Linux Tools for VHDL

Simulation

Simulation tools let you write VHDL, simulate and debug it, but you need a
synthesis tool if you want to run your VHDL in hardware. Many simulation tools
have graphical waveform displays. Most professional VHDL tools will run on
Linux. Free tools include FreeHDL and GHDL, a GCC front end for VHDL.

Synthesis

Synthesis takes working VHDL and maps it to a hardware device, such as an
FPGA or MPGA (mask programmed gate array). This is device-specific, so free
tools are rare. Big manufacturers support Linux with proprietary tools. Altera
Quartus is available for Linux but not in the Web edition. Xilinx ISE also is
available for Linux but not in the Web pack edition. Pages on-line can tell you
how to get Quartus and ISE running on Linux (see Resources).

Resources for this article: /article/7648.

Ian McLoughlin has used Linux for about 12 years and has a signal processing
background. Before emigrating to New Zealand, he was a university lecturer in
Singapore and still travels there frequently as a Visiting Scientist to the XSat
Satellite Programme (due for launch in 2006). He is married with two young
Linux-using kids.

Tom Scott is a director of Mission Technologies Ltd., (www.missiontech.co.nz)
known for his terse, straightforward, no-nonsense, hands-on approach. Father
of two, husband of one and a wanna-be missionary.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7648.html
http://www.missiontech.co.nz
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

At the Forge

WordPress

Reuven M. Lerner

Issue #125, September 2004

If you want a Weblog package with minimal command-line setup and a full-
featured Web-based administration system, WordPress may be for you.

A fitting end to this series on Weblog software is a brief introduction to
WordPress, which offers a wide array of features and continues to grow in
popularity and sophistication. WordPress is Weblog software with an extremely
clean, easy-to-use interface written in PHP with a MySQL back end.

 Installing WordPress

Installing WordPress is amazingly straightforward if you have a bit of
experience with Apache and MySQL. WordPress stores all of its information in a
set of MySQL tables, which means you need to create at least one database
before installing WordPress. WordPress allows you to have more than one
Weblog inside of a single database, which is useful if your site is hosted by a
company that gives you only a single MySQL database.

To create a new MySQL database, you need to use the mysqladmin program,
which is in /usr/local/mysql/bin on my system:

/usr/local/mysql/bin/mysqladmin -p create wordpress

The above command assumes you are running as root and that the root user
has administrative privileges. Once you have created the database, you need to
grant permissions for the WordPress user on these tables; we do this by
logging in to the database:

/usr/local/mysql/bin/mysql -p -u root

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Once you have logged in, you can grant permissions to the WordPress user,
which I called wpuser, with:

GRANT ALL PRIVILEGES ON wordpress.*
 TO wpuser@localhost IDENTIFIED BY 'wppass';
GRANT ALL PRIVILEGES ON wordpress.*
 TO wpuser IDENTIFIED BY 'wppass';

Next, download the source code to WordPress (see the on-line Resources
section) and open that .tar.gz file inside of your Apache document root
directory. You probably want to put the WordPress files inside of their own
directory or perhaps under a virtual host, but all of the files must be within the
document root if they are to be of any use.

Now point your browser to wp-admin/install, and you're on your way. The
installation screens check that everything is installed correctly and ask you to
answer several questions. Typically, you need to click on a link at the bottom of
each page to continue with and finish the installation.

If you fail to create the database first, WordPress tells you to do this, reminding
you that the database needs to be created before it can install the tables. You
can use the WordPress installer only a single time. If you try to run the installer
on an already-installed system, you are told to remove the old installation first.
Attention to these sorts of details is nice to see in a program aimed clearly at a
relatively nontechnical audience.

 Using WordPress

Once you have installed WordPress, you can log in as the admin user with a
randomly generated password. Logging in as the administrator allows you to
add, edit and delete postings, as well as configure the system for other users.
WordPress allows you to create any number of users, each of whom is assigned
a privilege level between 1 and 10. The administrator, with a privilege level of
10, is allowed to do anything to the system; other users similarly can be given
free rein by being assigned 10s.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7624f1.large.jpg

Figure 1. Entering a Weblog Posting with WordPress

Figure 2. Display of That Posting with the Default WordPress Template

But, of course, you don't want to give every user the equivalent of root access.
The default WordPress installation raises the bar on a number of features, so
you can assign privilege levels to different users. Thus, users with a level of 5
and above can manage the list of links that appears on the right side of the
page, and they also can upload images. These levels can be changed by using
the administrative interface.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7624f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7624f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7624f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7624f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7624f2.large.jpg

WordPress administration is entirely Web-based; once you have created the
database tables, you can manipulate the entire system by using a Web browser.
A number of menus are available when you are inside the administrative
interface, and some of these menus have submenus as well. Although I
originally was confused by the placement of certain features, I soon began to
understand the layout of the system and was able to locate and modify many
of the different options.

For example, I decided that it would be nice to include my blogroll, the list of
Weblogs I read on a regular basis. I use Bloglines.com, a Web-based aggregator,
and was able to generate a list of Weblogs in OPML (Outline Processor Markup
Language), an XML application that is the standard for such data. Importing the
list into WordPress was a snap by using the links menu and choosing blogroll.
One of the listed options was to import an OPML file; as soon as I did that, my
list of blogs was visible to the world.

 User Interface

Open-source applications often are criticized for their lack of a friendly user
interface. This is largely because open-source programmers are writing the
software for themselves and their colleagues, which means that anything other
than core functionality is cast aside.

The authors of WordPress, to their credit, have spent a great deal of time on
the user interface, trying to ensure that it is straightforward and unsurprising
for nontechnical users. For example, many Weblogs assume that the author
knows basic HTML tags and understands how to add and remove them. The
WordPress editing window lets advanced users place such tags manually, but it
also provides a set of JavaScript buttons for less-experienced users. These
buttons not only indicate what possibilities exist, but change shape to indicate
that a particular format currently is in use. The Close button at the end of the
row was a particularly clever idea; it closes all of the currently open tags.

Like most software with good user interfaces, WordPress includes many small
features that add up to a pleasant experience. For example, it automatically
creates en and em dashes when you use two or three hyphens. It allows you to
classify postings as drafts (the default), private or public, which means that you
can start working on a Weblog entry, go to lunch and then return to work on it.

WordPress is sensitive to the fact that deleting data is a dangerous act that the
user always should have to confirm. Thus, whenever the mouse moves over a
delete button, the background of that button turns red. As an additional
reminder, users are asked to confirm the action with a JavaScript dialog box.

With the exception of deleting, it is easy to undo any mistake that you might
make in WordPress by returning to the menu in question and changing the
value. All entries, including drafts and comments, can be edited repeatedly until
they are ready for publication.

Finally, the look and feel of a WordPress Weblog can be changed by modifying
the CSS, which handles the fonts, colors, sizes and placement; the templates,
which largely are standard PHP; and even the plugins, which can change almost
anything. It is possible to change the template within WordPress itself, although
I expect that most readers of this magazine would prefer to use Emacs or vi to
change the file directly on disk.

Installing a plugin requires downloading it and placing it within the appropriate
plugins directory, but activating it is completely Web-driven. This means that
system administrators can install a number of plugins for their users and let the
individuals choose which plugins they would like to activate. Several sample
plugins are included in the WordPress distribution, and others are available
from the WordPress Web site.

 Conclusion

Over the past few months, we have looked at a number of different types of
Weblog software. With the exception of COREBlog, a Zope product that
installed easily and quickly into my Zope server, WordPress was by far the
easiest and fastest to install. It has a full list of features, many of which have to
do with the clean, easy-to-use user interface. Even novice computer users and
Webloggers can publish regularly with this software. Although the underlying
code and technologies used—PHP and MySQL—are not my favorites, the set of
features, growth of the platform and the large community all make WordPress
a winning choice.

Resources for this article: /article/7641.

Reuven M. Lerner, a longtime Web/database consultant and developer, now is
a first-year graduate student in the Learning Sciences program at Northwestern
University. His Weblog is at altneuland.lerner.co.il, and you can reach him at
reuven@lerner.co.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7641.html
http://altneuland.lerner.co.il
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Kernel Korner

Extending Battery Life with Laptop Mode

Bart Samwel

Issue #125, September 2004

Economize on hard drive usage and extend your laptop's battery life.

Laptops give you the freedom to do whatever you want, wherever you want to
do it. But when your battery runs out, the fun is over. Fortunately, there are a
lot of ways to save power and make your battery last longer. For instance, you
can lower the processor speed, dim the display's backlight and spin down the
hard drive. The first two tricks work well on Linux, but until recently, spinning
down the hard drive could be quite a struggle. Even if you could get the drive to
spin down, it never would stay down long enough to save any power. This
article explains how you can use Laptop Mode, a feature recently added to the
Linux kernel, to spin down the drive for real. I talk only about Linux 2.6 here; a
Laptop Mode is available in 2.4, but it is a bit different.

 Hard Drives and Battery Life

Let's do a little math to find out how much extra battery life you can get by
spinning down the hard drive. A typical laptop on the market today has a
lithium-ion battery with a capacity of 50–100 Watt-hours of power, which is
good for two to four hours. Say we have a laptop with a battery of 50 Watt-
hours. If the battery lasts for 3.5 hours with the hard drive on, then we can
calculate the average power usage as 50/3.5 = 14.3 Watts. Say the laptop uses a
typical laptop hard drive, which uses about 0.9 Watts in idle mode and about
0.3 Watts in standby. In theory we can reduce the power usage by 0.6 Watts, to
about 13.7 Watts. This increases battery life to 50/13.7 = 3 hours and 39
minutes. The gain always depends on how much power you save relative to the
total power usage. In our example, the spindown saves about 4% of the total
power, so the maximum gain in battery life is about 4% as well.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

So much for theory, I want to show you some real data. I borrowed a friend's
Apple PowerBook G4, installed Debian GNU/Linux and the Linux 2.6.6 kernel
and then did some experiments. I wanted to estimate the maximum gain in
battery life and the time we needed between spinups to come close to that
maximum. I expected a pretty large gain, because the laptop was equipped
with a power-hungry 5,400 rpm drive and because I stripped the system of the
X server and all dæmons. I wrote a benchmark program that always performs
the same amount of disk I/O per hour, but with a configurable inactive period
between I/O bursts. During inactive periods, the benchmark program spins
down the hard drive. I ran the benchmark with a number of inactive period
lengths, and I used the APM battery information to calculate the expected
battery life.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7539f1.large.jpg

Figure 1. Results of the Battery Life Experiment

I've run this experiment with the disk spun up all the time and with burst
intervals ranging from 12 seconds to ten minutes. The results are illustrated in
Figure 1. As you can see, as soon as you do I/O less than once every 30
seconds, you have pretty much saved all you can. This seems strange, because
spinning up the disk costs a lot of power, right? No, actually, it doesn't. If the
drive can spin up in two seconds, that takes about as much power as keeping it

https://secure2.linuxjournal.com/ljarchive/LJ/125/7539f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7539f1.large.jpg

running idle for, say, eight seconds. So if you can spin that drive down for nine
seconds, you've already saved some power. The 30-second burst interval
already leaves room for a pretty long spindown, which is why it shows such
good benchmark results.

 Laptop Mode

Laptop Mode is a setting for the Linux kernel that changes how the kernel
distributes disk I/O over time. Linux normally does disk I/O in small amounts,
nicely spread out over time. But with all that I/O going on, your hard drive never
gets a chance to spin down, wasting valuable power. For a laptop, disk activity
must be concentrated into short stretches of time, with periods of inactivity
between them, like I did with the benchmark. When you enable Laptop Mode,
Linux does exactly that. You can get stretches of up to ten minutes without disk
activity, which definitely improves your laptop's battery life.

 How It Works

Let's take a look at what Laptop Mode does to get that kind of I/O behaviour. To
create periods without disk activity, we need to do as much as we can during
the active periods. After that, we need to hold off disk I/O for as long as
possible. During active periods, we do a couple of extra things. First, we
perform some read-ahead; if that data actually is needed during the inactive
period, we've saved a spinup. Laptop Mode sets the read-ahead to 4MB by
default. Second, we sync everything to disk at the end of every active period.
This keeps your data safe; when the drive has spun down, you can be sure that
everything done up to the spindown is stored safely.

During an inactive period, writes are the only kind of disk I/O we can hold off.
We can keep the unwritten data in memory for as long as we like or until we're
out of memory. Unfortunately, this was not so easy for us to implement,
because Linux submits write requests from many places. We needed to tweak
all those places to hold off their writes.

The first and most important tweak has to do with modified or dirty data.
Normally, when a cached disk page has been modified more than 30 seconds
ago, it expires, and the pdflush dæmon writes it to disk. Fortunately, the expiry
interval is configurable through /proc/sys/vm/dirty_expire_centisecs. Laptop
Mode sets it to ten minutes so that changes stay in memory for up to ten
minutes before they're written to disk. Because every active period is ended
with a sync, the inactive period starts without any dirty pages. Therefore, during
the first ten minutes of an inactive period, we can be sure that no pages are
written back because they expire.

The second tweak concerns journaling filesystems, which do a lot of disk I/O
themselves. On most of the journaling filesystems supported by Laptop Mode,
a change to the filesystem triggers a write operation within five seconds. For
instance, in the ext3 filesystem, a filesystem transaction has a maximum
lifetime before it is automatically committed, and committing means writing to
disk. This maximum lifetime can be configured using the commit mount option.
By remounting the filesystem with this option set to ten minutes, we stop ext3
from committing transactions during an inactive period. Again, we start every
inactive period with a sync, so no transactions are open when the inactive
period starts. Laptop Mode extends a similar treatment to the other supported
filesystems, ReiserFS and XFS.

The final tweak occurs in Linux's memory management. If a lot of memory is
allocated during an inactive period, the memory manager eventually has to
select some memory pages that need to be dropped. It is possible to select a
page that needs to be written to disk before it can be dropped, for instance a
modified disk page or a page that needs to be written to swap space. But then,
it has to spin up the drive to perform that write, and we don't want that to
happen. Andrew Morton tweaked the memory manager so that when we're
running in Laptop Mode, the memory manager first tries to select pages that
don't require a write.

Using these tweaks, Laptop Mode can create up to ten minutes without disk
activity. When you're not changing any files at all, you can get even longer
periods without spinning up the disk. After all, if there's nothing to write, there's
no reason to spin up the disk. Unfortunately, when you've mounted the
filesystems with the default options, things change by themselves; the
filesystem records access times. Access times are updated even when you're
only reading files, and they must be written to disk eventually. To avoid this
problem, Laptop Mode remounts all filesystems with the noatime mount
option. This makes them stop recording access times, so you actually can get
more than ten minutes of time without disk I/O.

As you might have noticed, we're doing some things typically done from user
space, such as tweaking /proc. In fact, we've split Laptop Mode into a kernel
component and a user-space script. You can use the script to enable laptop
mode, and it enables the kernel support by setting /proc/sys/vm/laptop_mode.
It then remounts your filesystems and tweaks some other settings in /proc as
well.

 Setting It Up

To set up Laptop Mode on your system, first make sure you have a kernel
version that supports it. Laptop Mode is included in Linux 2.6 from version
2.6.6 upward. In the kernel source tree, you can find the documentation for

Laptop Mode in Documentation/laptop-mode.txt. Embedded in the
documentation is the control script, which you have to extract and save as /
sbin/laptop_mode. Give the script execute permissions: chmod 700 /sbin/
laptop_mode.

To enable Laptop Mode, run (as root) /sbin/laptop_mode start. This
does everything necessary, except it doesn't make your hard drive spin down.
To do that, you must set the hard drive's idle timeout using hdparm -S 4 /
dev/hda. The value 4 indicates an idle timeout of 20 seconds. If you want to
disable Laptop Mode, simply run /sbin/laptop_mode stop.

You probably want to configure Laptop Mode so it starts whenever your laptop
runs on batteries. If you have a laptop that supports ACPI, you can set this up
like so: extract the files ac_adapter and battery.sh from the Laptop Mode
documentation and install them in the indicated locations. Edit battery.sh to
configure your hard drive's device name and your preferred idle timeout, and
you're ready to roll.

 Spinup Debugging

Sometimes your drive spins up for reasons you don't understand. When this
occurs, it's time to start debugging. Laptop Mode includes a mode for
debugging disk activity, block dump mode. Before you enable it, you first must
stop syslogd from logging kernel messages or stop it completely. How this is
done depends on your distribution. If you don't stop syslogd, you may put your
machine in an endless loop; the debug output is picked up by syslogd, which
writes it to disk, causing more debug output and so forth.

To enable block dump mode, run (as root) echo 1 > /proc/sys/vm/
block_dump. The kernel output, which you now have to read using dmesg
because syslogd is inactive, should show messages such as these:

bash(273): READ block 3242 on hda1
bash(273): dirtied inode 10237 (.bash_history) on hda1
pdflush(6): WRITE block 3242 on hda1

You can read this output as follows. A process named bash, with process ID
273, has read the block with number 3242 on device /dev/hda1. That same
process then dirtied a file called .bash_history; the file was changed, but the
changes weren't written to disk yet. The pdflush dæmon then wrote block 3242,
which most probably is the block that bash modified earlier.

When you've got the debug output, it's time to diagnose your problem. If you're
seeing a READ message somewhere, you don't have to look further. Find out
why the process needs to read this data and decide whether you want to stop

the process, change the application's settings so that it doesn't need that data
anymore or perhaps read the data ahead when the drive is spun up. Reading a
file ahead is no more difficult than doing cat /my/file >/dev/null,
preferably twice, so Linux's read-once logic does not throw the file right out
again. Now, if you're seeing only dirtied file messages, there's not much to
worry about. Nobody is writing anything to disk; these messages tell you only
that a process is making changes that need to be written eventually. If you get
these, your disk spins up once every ten minutes to write back the
modifications, and that's it.

If you're seeing WRITE messages more often than once every ten minutes, and
you're not seeing any READs that could have triggered an active period, there's
a good chance that some process is syncing a file explicitly. syslogd is notorious
for doing this. If you see syslogd writing at unexpected times, you should adjust
your syslog.conf. It probably contains lines like this one:

kern.* /var/log/kern.log

This line tells syslogd to call fsync() after every log message matching kern.*. If
you change the line to this:

kern.* -/var/log/kern.log

and restart syslog, syslog no longer calls fsync() on these log messages. Be
careful for which log files you make this change, though. For instance, if you
care about security, you probably want to keep auth.log synchronized.

Tips and Tricks

MP3 Playing

If you want to play MP3s with your drive suspended, you can try increasing the
READAHEAD setting in /sbin/laptop_mode. Alternatively, you can copy a whole
set of MP3s to a small tmpfs RAM disk. Make sure you don't make the RAM disk
so big that it gets pushed out to swap space or you defeat the purpose. A small
RAM disk is good for anything for which you don't want disk activity to occur—
but only if your data isn't important.

Custom Spindown Times

It's possible to adjust Laptop Mode's maximum spindown time. To do that, set
variable MAX_AGE in /sbin/laptop_mode to the maximum number of seconds
you want your data to remain in memory without being saved to disk. By
default, it is set to 600 seconds or ten minutes. It really doesn't pay to increase

the setting to a higher number, as you can see from the benchmark results that
I got on the PowerBook. You can set it to a lower value if you care more about
your data and less about those extra two minutes. And if you want to prevent
losing some really important data that you've just saved, you simply can
execute sync. Laptop Mode respects your sync requests, so this actually writes
everything to disk, as it normally would. The sync also resets all timeouts, so
that after the sync the disk can stay spun down for up to ten minutes again.

Spinning Down with cpudyn

If you are using cpudyn to control your CPU frequency dynamically, you might
be interested to know that it also can spin down your hard drive. I have seen
some drives that simply ignore their idle timeout setting if it's too low for their
taste. Also, idle timeout settings are done in five-second increments, which
means that you can't set it to something like eight seconds. cpudyn comes in
handy, because it doesn't rely on your hard drive to detect idle periods, and it
can spin it down whenever you want.

Smart Spindown

Laptop Mode performs a sync at the end of an active period and then waits for
the disk to spin down on its own. It's even better to sync just before the drive
spins down, because then you save data that is up to 20 seconds more recent.
Laptop Mode can't do this, because it can't spin down the drive actively. I have
written a script to do this called Smart Spindown, which works together with
Laptop Mode. It's an unpolished piece of script, but if you really want to save
every bit of power there is or if you want to keep 20 extra seconds of data safe,
this might be for you; see the on-line Resources section.

 Acknowledgements

Even though I don't have a laptop myself, I've had a lot of fun working on
Laptop Mode. I want to acknowledge the efforts of the other guys who have
contributed to Laptop Mode, including Jens Axboe, Micha Feigin, Andrew
Morton and Kiko Piris. I also want to thank Jeroen Kruis for allowing me to
abuse his brand-new PowerBook G4 for my experiments.

Resources for this article: /article/7647.

Bart Samwel initiated the effort to put Laptop Mode in Linux 2.6, even though
he does not own a laptop. He studies Computer Science at Leiden University,
The Netherlands, and earns his living writing proprietary software. He can be
reached at bart@samwel.tk.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/125/7647.html
mailto:bart@samwel.tk
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Cooking with Linux

The Wireless Kitchen

Marcel Gagné

Issue #125, September 2004

Manage your wireless networking settings as you move from place to place,
and keep an eye out for the spot with the best signal.

No, thank you, François, I don't need to sit down right now. Yes, I see that the
tables are free. That's because our guests haven't arrived yet. Quoi? Ah, I see.
You're wondering why I am wandering around with this notebook in my hands
and not taking a moment to sit down. The reason is simple, mon ami. I've
installed wireless access points in each wing of the wine cellar so we and our
guests can have wireless access. I'm wandering around with my notebook to
check signal strength. I want to make sure that no matter where our guests
make themselves comfortable, they have access.

Welcome, mes amis, to Chez Marcel, home to the finest in Linux cooking, a
superb wine cellar and, now, wireless Internet access. Please sit and make
yourselves comfortable. François, head down to the wine cellar and bring back
the 1998 Eden Valley Riesling from Australia, immédiatement!

Before you came in, mes amis, I was busy making sure that wireless access was
available in all parts of the restaurant. In the case of a classic, wired network
card, a little light let you know whether you actually were plugged in to the
network. This isn't always so cut and dry with wireless cards. Factors such as
distance, signal strength and even the location of access points dictate what
kind of service you can expect. That's all fine, if you have that information at
your disposal.

The tools on today's menu offer a variety of approaches to providing wireless
card information, from signal strength to access-point availability. A number of
these applications' authors thank Jean Tourrilhes for his work on the Linux

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

kernel wireless extensions, so I take a moment here to thank him as well. As
François pours the wine, it's time to sample the first item on today's menu.

As I've mentioned in the past, I'm rather fond of WindowMaker dock apps,
those self-contained programs that take up so little room on the desktop.
Consequently, I have three such apps for you starting with Jess Mahan's
WmWiFi (Figure 1). This little WindowMaker application caught my eye partly, I
suppose, because it looks a little like the signal meter on my old cell phone.
When you download it (see the on-line Resources section), you can choose from
Debian packages as well as the source. Building the package from source
requires your old friend, the extract and build five-step:

tar -xzvf wmwifi-0.4.tar.gz
cd wmwifi-0.4
./configure
make
su -c "make install"

To run it, you can type wmwifi at the command line and leave it at that, but
you may find that it doesn't appear too easily if you aren't running
WindowMaker. Try this command instead, wmwifi -bw. The -bw, if you are
curious, stands for broken window manager. Never let it be said that Jess
Mahan did not have a sense of humor. Incidentally, the gray background is
WmWiFi's default appearance, but clicking on the dock app turns on the
backlight, which then glows LCD green.

In a similar vein, Carsten Schrmann's wmWAVE (now maintained by Jens
Schrmann) offers a nice compact signal strength meter for your wireless card,
plus a little bit more. There's also an overall link quality reading and a reading
on the noise level. Building this app is easy. Simply extract the tarred and
gzipped bundle, type make and make install. To run wmWAVE, execute the
binary called wmwave

The third of my WindowMaker apps is Ico Doornekamp's wmifinfo. Unlike the
others, this isn't strictly a wireless application. Instead, it automatically detects
all of your network interfaces and provides information on each one. With a
wireless card, it also displays a signal strength meter at the bottom of the dock
app itself. See Resources for the source for wmifinfo.

Once again, this is an easy build: simply extract, type make and make
install. To run it, type the command wmifinfo. If you are fond of the gray
LCD look, use the wmifinfo -l option. To switch between interfaces, if you
have multiple cards, left-click on the dock app. By using the -i option, you can
specify a certain interface with which to start (wmifinfo -i eth0).

Figure 1. Three WindowMaker Wireless Dock Apps: WmWiFi, wmifinfo and wmWAVE

Longtime command-line fans such as myself always are excited about finding a
nongraphical application that does a great job and manages to do it with style.
Jan Morgenstern's wavemon is such an application. In a single ncurses display,
wavemon offers a great deal of network information, including signal, noise
and quality levels. The information is displayed in a dynamic bar graph; see
Figure 2. wavemon also includes a histogram view and onscreen configuration.

Figure 2. wavemon shows signal and noise levels and more.

Building wavemon is the classic extract and build five-step again. To run
wavemon, type wavemon at the command line. When the display starts up, you
should see the summary information screen, which includes signal levels, TCP
statistics, information on mode, encryption, bitrate, your access point, local
network card and more. All of the functions are controlled with function keys.
To switch to the histogram view, press F2 and then F1 to return to the summary
screen. The configuration screen is accessed by pressing F7. Reminders about
each function key's function are at the bottom of the screen.

With the release of KDE 3.2, users of the popular desktop environment will find
a nice new application called KWiFiManager. This application, written by Stefan
Winter, provides signal and quality information like the programs previously
mentioned, but there is much more to KWiFiManager. It also makes it possible
to maintain up to four different configurations. The road warriors among you
who move from office to office should find this one particularly useful.

KWiFiManager may not be installed by default. The easiest way to check is
either to look in your KDE menu or simply type kwifimanager to start the
program.

When KWiFiManager starts, it displays a basic status window showing signal
strength, connection speed, access point, local IP address and the frequency of
the channel. Depending on the actual strength of the connection, you see
words like TOP, EXCELLENT or ULTIMATE accompanying the numeric signal
strength indicator. You also see a small icon in your system tray with a numeric
and graphical signal quality indicator. Click File on the menu bar and select
Connection statistics for a graph of signal quality over time (Figure 3).

Figure 3. KWiFiManager reports real-time connection information and graphed statistics over
time.

For those who feel cheated that computers aren't providing all the lights, beeps
and science-fiction noises technology promised, KWiFiManager has an audible
feature to satisfy that craving. A beeping tone that increases or decreases in
pitch with the signal can be turned on. Click Config on the KWiFiManager menu
bar and select Acoustic Scanning. I warn you, mes amis, that you may find this
becomes tedious pretty quickly, but it is fun for short periods.

KWiFiManager goes well beyond being a signal strength meter. It can help
simplify your network configurations by providing automatic connections to the
various networks you may encounter. Click Config on the menu bar and select
Configuration Editor. At first, you are asked to enter the root password and
then a somewhat larger window appears.

Figure 4. Up to four preset wireless configurations are possible.

Along the top, you see four tabs labeled Config1 through Config4. Each of these
areas allows you to prepare a configuration based on whatever network you
are going to be accessing, whether at home or on the road. I tell you about
these settings in a moment, but first I want to direct your attention to the
bottom of the KWiFiManager window. There's a check box to allow you to Load
preset configuration on KDE startup. If you check that box, you can select one
of your four configurations as the default. If you generally are in your office
when you start your notebook, you can select that as your default network
setup for whenever you log in.

Now, back to the rest of these settings. The most basic aspect to each of these
configurations is right at the top, the Network name. Each of the four
configurations can have a network name associated with it that is specified in
your access point. If you want KDE to activate your interface and connect you to
whatever network is available, enter ANY as the network name. Off to the right
of that, you can select the connection speed. I personally leave this set to Auto.

Right below these settings is a field labeled Execute script on connect. This can
be any kind of a program you want to run, including a script. Perhaps you'd like
to play a tune or have your system suggest a wine. I want to run custom firewall

scripts depending on where I am and what services I like to make available on
the network in question. Speaking of security, a little further down, you should
see a check box labeled Use cryptography. If you are using a wireless access
point with WEP encryption, make sure this box is checked. Some new fields
appear in the application window where you can specify and enter your key
passphrase information. Click OK (or Apply if you want to keep making
changes) and you are done.

Incidentally, you also can access this configuration dialog through the KDE
control center; the program name is kcontrol. Look under the control center's
Internet menu.

Once again, mes amis, closing time has arrived all too quickly, but Chez Marcel
is never too strict with the hours. Enjoy a final glass of wine and enjoy the
wireless access. Until next time, mes amis, let us all drink to one another's
health. A votre santé Bon appétit!

Resources for this article: /article/7643.

Marcel Gagné (mggagne@salmar.com) lives in Mississauga, Ontario. He is the
author of Moving to Linux: Kiss the Blue Screen of Death Goodbye! (ISBN
0-321-15998-5) from Addison Wesley. His first book is the highly acclaimed
Linux System Administration: A User's Guide (ISBN 0-201-71934-7). In real life,
he is president of Salmar Consulting, Inc., a systems integration and network
consulting firm.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7643.html
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Paranoid Penguin

Rehabilitating Clear-Text Network Applications with Stunnel

Mick Bauer

Issue #125, September 2004

Put modern crypto onto your legacy applications without modifying them. Mick
Bauer shows how to bring pre-SSL programs up to date.

The world is full of network applications that get things done, have withstood
the test of time and have rotten security. Telnet? Brilliant in its simplicity and
versatility, but it transmits your login credentials in clear text. rcp? Ever so
ubiquitous and scriptable, but rhosts-based authentication's time has come
and gone, thanks to IP spoofing.

Sure, you can swap those old warhorses for their encrypted successors—SSH
instead of telnet and scp or rsync-over-SSH for rcp. Or, you can build an all-
purpose IPSec tunnel to each remote host with which you communicate. But
the latter often is overkill, and the former is easier said than done if your choice
of applications in a given scenario isn't completely within your control. Surely
there's a way to add strong encryption to legacy network applications.

Consider the mighty SSL wrapper, Stunnel. This month, I explain how to use
Stunnel 4.0 in tandem with OpenSSL to bring your legacy applications into the
modern era, security-wise. And what about wireless? If you're compelled to use
a clear-text network application over a weakly secured wireless medium, such
as 802.11b, can Stunnel help? Read on.

 Background

You need to understand two things in order to use Stunnel. First, know how
your network application uses the network. If it's a simple single-TCP-port
application such as telnet, which does all its listening on TCP 23, Stunnel works.
If it uses UDP, the portmapper service or any other dynamic port-allocation
scheme, Stunnel can't help you. For example, RPC applications don't work,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

because they use portmapper. FTP uses TCP 21 for control traffic but
dynamically assigns arbitrary high ports for data connections, so it's also
disqualified.

Second, you need to understand the basics of public key cryptography but not
necessarily the ins and outs of X.509 or Public Key Infrastructures. I've
described how this works in several previous columns, such as “The 101 Uses of
OpenSSH, Part II” [LJ, January 2001]. For now, suffice it to say that in public key
cryptography, each participant has two keys: a public key that you share with
the other participants and a private key that only you possess. Other people
use your public key to encrypt things that they want only you to see; you use
your private key to decrypt those things.

Digital signatures work backward from encryption. If you sign something with
your private key, anybody can use your public key to verify that the signature
was generated with your private key and therefore by you. Again, this depends
on only you possessing your private key, no matter how many people have
copies of your public key.

In the X.509 world, we call the public key a certificate, which, technically, is a
public key bundled with digitally signed information about the public key's
owner, including name and e-mail address. We call the private key simply the
key. Somewhat confusingly, we sometimes refer to both of them, together, as a
certificate. Context helps: when I talk about a passphrase-free certificate, you
know I'm talking about a combined key/certificate because the certificate itself,
being a public key, can't have a passphrase.

That's by far the most concise explanation I've ever given of public key
cryptography and X.509. If it isn't enough for you to decipher the rest of this
article, read the Stunnel FAQ or the mighty RSA Crypto FAQ (see the on-line
Resources section) for more information. Now it's time to plunge into Stunnel
proper.

 Installing Stunnel

Chances are, your Linux distribution of choice includes a binary package for
Stunnel. Recent releases of SuSE, Fedora and Red Hat Enterprise all include
Stunnel version 4. Debian 3.0 (Woody) includes Stunnel version 3.22.

On the one hand, 3.22 is a stable version that's well documented and well
understood. On the other hand, Stunnel version 4 is a major rewrite that,
among other things, allows for easier management of multiple tunnels. It's the
version I'm covering here. If you run Debian, I think it's worth your while to
download the latest Stunnel source and compile it yourself.

Compiling Stunnel on any Linux distribution is quick and easy. First, make sure
you've already got your distribution's packages for OpenSSL, probably called
openssl; OpenSSL development libraries, openssl-devel or libssl096-dev; and
TCPwrapper development libraries, libwrap0-dev on Debian, included as part of
SuSE's and Fedora's base installations. Then, unpack Stunnel's source code
tarball and do a quick:

./configure && make && make install

If for some reason that doesn't work, entering ./configure --help lists
advanced precompile configuration options you can pass to the configure
script. Once you've installed Stunnel, it's time to create some certificates and
start tunneling.

Most of what follows applies only to Stunnel v.4.0.0 and later. If you choose to
use, for example, Debian's Stunnel 3.22 package, you need to refer to the
documentation included with that package or to the examples on the Stunnel
Web site (see Resources); most of that Web site still covers the older version.

Creating Certificates with OpenSSL

A Stunnel server—that is, a host that receives encrypted packets destined for a
local clear-text service—requires a server certificate. A Stunnel client does not,
however, unless you intend to configure your Stunnel server to use client-
certificate authentication. Sadly, client-certificate authentication is beyond the
scope of this article, so none of our examples require the client to have its own
certificate—only the server does.

If you installed Stunnel after compiling from source and issuing a make
install command, you've already got a server certificate (/usr/local/etc/
stunnel/stunnel.pem). If you installed Stunnel from a binary package, the
package's post-installation script may or may not have created a server
certificate for you.

Fedora Core 1's Stunnel RPM creates an empty certificate for some reason.
Needless to say, you need a proper certificate, and the way to do that on
Fedora is to change your working directory to /usr/share/ssl/certs, type make
stunnel.pem and copy stunnel.pem to the directory /etc/stunnel. This
certificate, as with certificates created by the Stunnel source-release Make
script, has no passphrase.

The Danger of Passphrase-Free Certificates

Using a server certificate that's been generated automatically or semi-
automatically by a script is quick and convenient, but there's one problem: such
a certificate nearly always is created with no passphrase. On the one hand, you
can and should set the permissions and ownership on your certificate to make
it root-readable only, so at least unprivileged users on your system aren't able
to read and thus use it. On the other hand, if your system is root-compromised,
your passphrase-free certificate then can be used and abused by the attacker.

This may be an acceptable risk for you, and indeed, using passphrase-free
server certificates is a common practice. After all, it's inconvenient to require a
human being to enter a certificate's passphrase every time Stunnel starts up.
However, as a matter of principle, crypto experts widely consider it reckless to
use passphrase-free certificates. If a process is sensitive enough to warrant
cryptography in the first place, the argument goes, it's sensitive enough to
require a human being to start that process.

If your Stunnel server system needs a server certificate, or if your automatically
generated certificate doesn't meet your needs—for example, it lacks a
passphrase—you need to generate your own, using the OpenSSL command.
Space does not permit me to give a full, proper explanation of this powerful
tool. Luckily, the Stunnel FAQ (see Resources) answers some of the most
common questions about how OpenSSL and Stunnel interact, and it includes
pointers to further sources of information about OpenSSL.

Suffice it to say that for some users, there may be a compelling reason to
create their own Certificate Authority (CA), install their CA certificate (but not
key) on every system running Stunnel and use their CA certificate to sign all
server certificates. This is necessary, for example, if you want your Stunnel
server systems to accept client connections only from Stunnel client hosts with
particular certificates.

For many if not most Stunnel users, however, it's good enough to use self-
signed certificates and to not worry about being or not being a CA. Here's how
to generate a self-signed server certificate using OpenSSL.

Listing 1. Creating a Server Certificate with OpenSSL

nearclient:/etc/stunnel# openssl req -x509 \
-newkey rsa:1024 -days 365 \
-keyout stunnel.pem -out stunnel.pem
Using configuration from /usr/lib/ssl/openssl.cnf
Generating a 1024 bit RSA private key
...++++++
...++++++
writing new private key to 'key2.pem'
Enter PEM pass phrase: ************
Verifying password - Enter PEM pass phrase: ******

You are about to be asked to enter information that will be

incorporated into your certificate request.
What you are about to enter is what is called a
Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) []:Minnesota
Locality Name (eg, city) []:St. Paul
Organization Name (eg, company) []:Wiremonkeys
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:nearclient.wiremonkeys.org
Email Address []:X.509master@wiremonkeys.org

nearclient:/etc/stunnel# chmod 600 stunnel.pem

In Listing 1, the real meat is in the first line. Parsing from left to right, this
command tells OpenSSL to create a certificate request in the X.509 digital
certificate format, using the RSA cipher with a 1,024-bit key, good for 365 days
and with both its key and (public) certificate written to the same file,
stunnel.pem. If you instead want to create a password-free certificate, you can
include the -nodes option at the end. Read the sidebar “The Danger of
Passphrase-Free Certificates” first, though.

Most of the rest of Listing 1 shows a dialog in which OpenSSL prompts me for X.
509-type information to include in the certificate, including Country and Region.
That stuff should be self-explanatory, but Common Name is very important. If
you're creating a server certificate, the certificate's Common Name must be set
to the fully qualified domain name (that is, the full hostname) of the host that is
going to use the certificate.

Most SSL/TLS-enabled applications expect this Common Name to resolve by
way of DNS to the IP address of your server. Stunnel does not unless you
configure it to, but setting Common Name to your FQDN is a good habit to get
into nonetheless.

In the last line of Listing 1, I've set the permissions of my new server certificate
to 0600 (-rw-------). Because I ran my OpenSSL command as root, this file
already is owned by root. It's important for any server certificate, whether it's
password-protected or not, to be root-readable only. I ran my OpenSSL
command from within /etc/stunnel, so my certificate was created in place, and I
didn't have to move my new certificate there by hand.

 Configuring Stunnel's Global Settings

Once you've got a suitable server certificate, it's time to configure yourself a
tunnel. This is considerably simpler than the previous task. This part is also
much more version-specific. In versions of Stunnel prior to version 4.0, Stunnel
accepted all of its configuration parameters as command options. In current

versions, however, the only actionable command-line argument it expects is the
nondefault path to its configuration file.

If you installed Stunnel from source with default compile-time options, Stunnel
expects its configuration file to reside in /usr/local/etc/stunnel. If you installed
from a binary package, this path is more likely to be /etc/stunnel. Listing 2
shows the global settings from an abbreviated sample stunnel.conf file
(abbreviated mainly in that I've omitted comment lines).

Listing 2. Global Settings in stunnel.conf

cert = /etc/stunnel/stunnel.pem
chroot = /var/run/stunnel/
pid = /stunnel.pid
setuid = nobody
setgid = nogroup
debug = 7
output = /var/log/stunnel.log
client = yes

The cert parameter tells Stunnel where to look for its server certificate; it
therefore follows that you need this parameter only on your Stunnel server
host, not on client hosts. The chroot parameter tells Stunnel which directory to
chroot itself (reset / to) after starting up; this happens after Stunnel has read its
configuration and server certificate files. You probably need to create this
chroot jail manually and populate it with a few things, for example, its own etc/
hosts.allow and etc/hosts.deny files, if you want to use TCPwrappers-style
access controls.

pid tells Stunnel where to write its process ID. This path is relative to that set by
chroot; that is, Stunnel writes its PID after chrooting itself.

setuid and setgid tell Stunnel which user and group to demote itself to after
starting. If Stunnel is to listen on any TCP ports lower than 1025 it must be
started as root, but it demotes itself after reading its configuration file, reading
its server certificate and binding to the privileged port.

By default, Stunnel sends its log messages of severity notice or higher to the
local dæmon syslog facility. Fedora's version sends it to authpriv, which in turn
logs to /var/log/secure. You can use the debug option to set a different log
level. Seven is the highest level and is best if you're having trouble getting
Stunnel to work. You can use the output option to tell Stunnel to send its
messages to a specific file rather than handing its messages off to syslog.

The last line in Listing 2 sets the client parameter to yes, which means that on
this particular system, I intend to initiate SSL transactions, not receive them. On
the server with which I intend to communicate, I need to leave this parameter
set to its default, no.

 Configuring a Tunnel

Now, finally, we come to the payoff—an actual tunnel. For this example, we're
going to tunnel telnet from the host nearclient to the server farserver. The
global section in farserver's stunnel.conf file can be almost identical to the one
in Listing 2, except that the client needs to be set to no. The major difference
between the two hosts' configurations is in their service definitions.

Before I dive into that, however, let's flesh out the example scenario a little
more. Suppose farserver already is configured as a telnet server; it already
accepts telnet sessions on TCP port 23. But, we don't want nearclient to
connect to the clear-text port; we need to use something else for an SSL
connection. As it happens, IANA has already designated a port for SSL-enabled
telnet (aka telnets): TCP 992.

Therefore, we want a tunnel from nearserver to TCP 992 on farserver. But how
will our non-SSL-enabled telnet command and our equally non-SSL-savvy telnet
server process know how to use this tunnel? That's a trick question; the tunnel
is completely transparent to the sending and receiving telnet processes.

nearserver's Stunnel process accepts the connection on the usual port—TCP 23
although this is user-defined—and then encrypts the packets with SSL before
forwarding them to TCP port 992 on farserver. farserver decrypts the packets
and then forwards them to its local telnet process on TCP 23. Actually, xinetd or
inetd receive the packets before in.telnetd does, but you get the picture.

In this way, when users on nearserver want to connect to farserver, they enter
the command telnet 127.0.0.1, and connection is encrypted, forwarded
to farserver and decrypted. farserver's reply packets follow the same path but
backward. Each telnet process (telnet and in.telnetd) thinks it's communicating
with a local user, but the packets in fact are traversing an SSL-encrypted
Stunnel session. All of which is a wordy way of explaining the six total lines that
comprise Listings 3 and 4.

Listing 3. Service Definition on nearclient

[telnets]
accept = 23
connect = farserver.wiremonkeys.org:992

Listing 4. Service Definition on farserver

[telnets]
accept = 992
connect = 23

As you can see, a service definition can be as simple as a pair of lines, an accept
line to designate a listening port and a connect line to designate a destination
port. Precisely what this means depends on whether a given system is a
Stunnel client or a Stunnel server. On a client system, client = yes, Stunnel
expects clear-text packets on its accept port and sends encrypted packets to
the connect port. On a server system, client = no, Stunnel listens for SSL
connections (encrypted packets) on its accept port and sends decrypted
packets to the connect port.

Also notice that on a client, in your connect statement you probably need to
specify not only a port but also a remote hostname or IP address, as in Listing
3, connect = farserver.wiremonkeys.org:992.

According to the way we've configured things in Listings 3 and 4, any host can
connect to TCP port 23 on nearserver and traverse nearserver's tunnel to
farserver. We can restrict this in any number of ways, including by using
iptables. We can tell Stunnel to accept only local connections to the Stunnel
client process, however, by using accept = 127.0.0.1:23 on nearclient.

This technique would work on farserver as well. If farserver has multiple
interfaces, eth0, wlan0, ppp0 and so on, you can write your accept statement to
specify the IP address of the interface on which you want it to receive tunneled
packets in the same way. On both Stunnel clients and servers, the default IP for
accept statements is any (all local interfaces), and the default IP for connect
statements is 127.0.0.1 (localhost).

What about the telnet server on farserver? After all, clear-text telnet sessions
seldom are a good idea. Therefore, in practice you want to be sure to add the
line bind = 127.0.0.1 to your /etc/xinetd/telnet script, so that only local
processes can connect to TCP 23.

Once you've finished configuring Stunnel on client and server, start Stunnel
simply by typing the command stunnel. You don't need to worry about
starting it on the server before starting it on the client; the client doesn't initiate
a tunnel until you try to use it, for example, by trying to start a telnet session. If
either or both hosts are using a password-protected server certificate, you are
prompted for it now. Keep this in mind if you set up a Stunnel startup script.
Once you've entered the certificate, you should be up and running.

You now can check for successful startup by issuing a quick ps auxw and
looking for a Stunnel process—Stunnel returns no output to the console
whether or not it starts cleanly. It does, however, send messages to your
system's syslog facility, including startup messages.

Once stunnel is running on both client and server, our users on nearclient can
trigger a tunnel by connecting to nearclient's TCP port 23, for example, with the
command telnet 127.0.0.1 (23 is telnet's default port). Listing 5 shows a
sample encrypted-telnet session.

Listing 5. Sample Telnet Session

nearserver:/usr/local/etc/stunnel# telnet 127.0.0.1
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
Fedora Core release 1 (Yarrow)
Kernel 2.4.22-1.2115.nptl on an i686
login: myfaraccount
Password: **********
Last login: Sun Jun 13 21:39:17 from localhost.localdomain
[myfaraccount@farserver myfaraccount]$

As you can see, from the end-user's perspective, connecting to farserver in this
way is practically indistinguishable from any other telnet session. The bash
prompt at the end of the listing, however, confirms that we have in fact
connected to farserver.

Stunnel and inetd/xinetd

I have a confession. The examples in this article do not show the most efficient
way to use Stunnel to encrypt telnet, although I assure you I've tested these
examples, and they do work.

My justification is I wanted to illustrate the concept of tunneling generic TCP
services quickly, using a technique that works for practically any single-TCP-port
service. But telnet, pop3 and other services typically started by a super-server,
such as inetd or xinetd, are supported through several different Stunnel
features that are beyond the scope of this article.

For example, a Stunnel server can, rather than forward packets with a connect
statement, pass them to a process that Stunnel invokes itself with the exec
parameter in stunnel.conf. Alternatively, you can configure Stunnel itself to be
invoked dynamically by inetd or xinetd.

For more information on using Stunnel with dynamically started dæmons or in
conjunction with inetd or xinetd, see the stunnel(8) man page and the Stunnel
FAQ.

 Conclusion

And that, I hope, is enough to start you down the path of Stunnel mayhem. As
usual, I've scratched only the surface. I leave it up to you to explore Stunnel's
ability to authenticate tunnels with client-certificate checking, its support for
TCPwrappers-style access controls and the myriad global and service-specific
options supported in stunnel.conf. Let the stunnel(8) man page be your guide,
and may your single-TCP-port-using unencrypted-TCP applications be
eavesdroppable no more.

Resources for this article: /article/7646.

Mick Bauer, CISSP, is Linux Journal's security editor and an IS security
consultant in Minneapolis, Minnesota. He's the author of Building Secure
Servers With Linux (O'Reilly & Associates, 2002).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7646.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 EOF

Faster Training for Smarter Customers

Rich Bodo

Issue #125, September 2004

A new nonprofit training center combines open-source course materials, top-
ranked instructors and realistic work environments together for classroom or
on-site training.

More is involved in information transparency than mere software. In Mountain
View, California, we are working on new methods of training using open course
materials. The Freedom Technology Center (FTC) is an educational organization
founded to provide high-level technical training to local and on-line
communities. The curriculum is based on freely available technical courseware
and software courses derived from free software or open-source software
projects. What follows is an introduction to FTC and a brief report on what we
are doing.

Doc Searls points out that IT is being driven more and more from the demand
side, and that's the direction from which we approach training. We understand
the trend of empowerment that open-source software is a part of, and we are
designing training programs to fit into that paradigm. These days, virtually any
IT task can be tackled by a smart self-learner who receives a good introduction
from a professional. According to the MIT OCW Program Evaluation Findings
Report (March 2004), self-learners are far and away the largest group using
freely available training materials. FTC is here to give self-learners a solid
introduction and, in many cases, a working sandbox. We kickstart self-learners
on the road to competence with freely available tools, training and courseware.

For public benefit, we host free training events to boost awareness and
competence on open technical courseware. This is the fun part. We have
hosted free training events on spam filtering, trusted computing and open
hardware. We ran a book donation drive for the Linux Users Group of Iraq and
fund-raisers for FTC and the Free Software Foundation (FSF). As a rule, we try to

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

support Linux users groups and organizations, such as the FSF and Electronic
Frontier Foundation (EFF) wherever we can. In short, we support the
generation, dissemination, preservation and protection of technical knowledge
whenever possible.

We also kickstart corporate self-learners, providing high-quality, hands-on,
modular courses. This is the hard work that keeps our lights on. The only way
for us to compete is our quality. FTC offers the highest quality training
experience available on the topics that we instruct. Our method is first to
identify and recruit the single best trainer for each training class we offer. Our
instructors all have written the book on their given topic. With the best possible
instructor on a topic, and an all-inclusive, hands-on, practical offering, we keep
quality at a maximum. We're not the cheapest for corporate training, but in
general, if we can't be the best, we don't offer the course. Lucky for us, high-
quality trainers seem to like our style.

Geographically, we serve the local technical community in Northern California
and a larger on-line community that can access our course notes over the
Internet. Our trainers take paid training courses on the road, matching free
seminars for users groups and tradeshows on open courseware with paid
events for professional users. If we administer it right, we can offer a self-
funding free training event or two in any metropolitan area.

Content-wise, we're focusing on open-source applications that people are using
in business right now, and that means Samba and OpenLDAP. We have Linux
certification and spam-filtering courses, and we are adding modules covering
mail and Web serving. Courses on Linux telephony and security issues will be
available soon.

Without profit as our prime motive, we're not bound to train using traditional
methods or business models. We can explore new technologies and teaching
methods. Right now we're working on a model for training whole IT
departments called Immersion Training. We have a lot of experience training in
corporate environments, and we think the most efficient way to do that is to
drop a training team into a company to merge with an IT team and lead it
through the design and implementation of new infrastructure, hands-on. When
we get there, the team has no infrastructure or training, but when we leave, it
has a basic infrastructure and a completely trained and supported staff, with
complete documentation of an entire modular, testable process.

Another thing we've been thinking about is how to get corporate trainers to
develop and use open courseware. We think corporate trainers should be hired
to customize and teach open courseware for their corporate clients. Open
courseware is a great marketing tool for trainers, and more trainers should do

it. There really is no financial downside for technical trainers if they know how
to market their courseware. But we're not simply discussing the economics of
new training models that use open courseware, we're proving them viable.

LJ Editor in Chief Don Marti is a board member of the Freedom Technology
Center.

Rich Bodo is a parallel entrepreneur and the Managing Director of the Freedom
Technology Center. When he is not discussing or implementing a new business,
he likes to read and write business software, science fiction and telephony
software. He welcomes your comments sent to
rsb@freedomtechnologycenter.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:rsb@freedomtechnologycenter.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 AML's M7100 Wireless Linux Terminal

Tony Steidler-Dennison

Issue #125, September 2004

In its own way, the device opens new inroads for Linux to the infrastructure of
commerce, the business back end that's a critical tool for management in
commerce on any scale.

Product Information.

• Vendor: American Microsystems, Ltd.
• URL: www.amltd.com
• Price: $1,795 US

The Good.

• Custom Linux kernel.
• Durability.
• Built-in 802.11b.

The Bad.

• Default telnet for communication.
• Weight.
• Soft keypad.

Although we use the phrase “world domination” somewhat tongue-in-cheek,
the growing scope of devices and applications controlled by Linux might make
this philosophy a quiet though no less real possibility. Designed for nearly any
business task requiring barcode scanning, the AML M7100 is a wireless Linux
terminal from American Microsystems, Ltd. By utilizing open-source tools, the
M7100 could provide a robust and cost-effective means for businesses large
and small to track inventory. In its own way, the device opens new inroads for

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.amltd.com

Linux to the infrastructure of commerce, the business back end that's a critical
tool for management in commerce on any scale.

The M7100 is built around a custom Linux kernel and the widely used Intel
StrongARM processor, coupled with 16MB of RAM and 4MB of ROM. This is the
same processor found in such devices as the Sharp Zaurus and Yopy Linux-
based PDAs. Those devices utilize the StrongARM in 400MHz configurations,
while the M7100 processor is a bit slower at 133MHz. Given the purpose-built
nature of the device, the slower processor clearly is not a drawback. The M7100
is intended to gather and transmit data to a centralized application.

Weighing in at 16 ounces with a rechargeable battery, the M7100 is built as
much for durability as for portability. The weight is due in large part to the
device's rugged casing, an enclosure that's been drop-tested onto concrete
from up to four feet and survived. This device is designed for use in such
locations as warehouses, stockrooms and loading docks, where it could be
destroyed easily in a single gravity mishap. To further counteract the weight
issue, there's a non-removable nylon wrist strap that's large enough to fit
around even my oafish hands.

The M7100 has an internal 802.11b wireless card. The card is functional out of
the box, hunting for and connecting to the nearest available open access point
without further configuration. Configuration options, including the 802.11b
Wireless Equivalent Privacy (WEP) and static or DHCP addressing, are available
from a menu.

Figure 1. The 55-key keypad features big number keys and alphabetical letters.

The screen and keypad of the M7100 also reflect the rugged business nature of
the device. The screen is a 160×160 backlit LCD, and the 55-key alphanumeric
keypad comprises the bulk of the device's front face. The keys are not arranged
in the typical QWERTY configuration but alphabetically for the letters, with a
block of larger number keys above. Directly above the numeric keys is a four-
direction cluster of arrow keys straddled on either side by Enter buttons.
Finally, just below the display are small power and backlight buttons
surrounding a large and highly visible scan key. This key activates the Long
Range Laser scanner for five seconds, allowing plenty of time to capture one
barcode and move on to the next. The five-second feature also provides a
measure of battery conservation, preventing the unnecessary power drain that
would result from firing the laser continuously. With a complement of fully
customizable function keys, the keypad is suited to nearly any purpose. The
layout also lends itself to use by either right- or left-handed operators.
Although the buttons feel a bit soft, they do provide enough tactile response to
help prevent manual data entry errors.

The M7100 ships with a docking cradle that doubles as both an in-unit battery
charger and a data-transfer dock. The cradle contains an additional slot
intended to charge a spare battery, and bright LED lights on the front face
signal power, as well as when main and spare batteries are charging. Power
connects to the back of the cradle between single USB and RS-232 serial ports.
These ports provide ample interfaces for connecting the cradle to a desktop or
server. They also provide hard-line alternatives to Wi-Fi for transferring data
from the terminal unit to a centralized location.

AML provides a pair of software-loaded CD-ROM discs. One disc contains the
CommandLink software, a Microsoft Windows-based tool for data transfer and
manipulation. According to the technical support staff at AML, however, the
software merely is provided in case the customer doesn't have an existing
communication and data-transfer package in place.

The real value in the software resides on the second disc. This disc contains a
full API and configuration tools. Detailed documentation and a step-by-step
HOWTO for configuring and compiling the StrongARM tools allow in-house
developers to create business-specific applications with relative ease. For
smaller companies or those with small development budgets, several
compatible packages exist that communicate openly with the M7100. These
include the TrackWare Application Engine, a GUI builder for creating
applications to transform and interpret the data received from the device. In
general, though, AML expects that its customers are sending their barcode data

to legacy applications. The tools provided in the default configuration are
focused specifically on data transfer.

I initially was a bit baffled as to how to test the M7100. Then, as I started to look
around my cozy laundry-room office, I realized how ubiquitous the barcode has
become in the past few decades. Linux distribution boxes, books, CDs, soda
cans and old issues of Linux Journal all had barcodes that were scanned easily
with the M7100—and that was just my office. The laser on the M7100 picks up
the barcodes much more easily and quickly than other scanners. It also picks
up labels from a considerably farther distance than others. I was able to scan
the barcode on my Dinty Moore stew cans from as far as three feet.

The M7100 provides the capability to transfer this scanned data almost
immediately, by way of a telnet session with the server. This session opens as
soon as a wireless connection is discovered, communicating with a server
defined in the network settings. Multiple servers may be defined in this setting,
with simultaneous telnet sessions opened to each server if so desired. The
device also fully supports FTP for both uploading and downloading data.

For as easily as the M7100 connects to a designated server on the network, the
telnet connection does seem to be a downside. Call me paranoid but, given the
security issues inherent in telnet, I'd much rather see this device connect using
a more secure protocol such as SSH. The device clearly is intended for use on
an internal network, but I find no comfort in using a clear-text protocol on a
wireless LAN. Fortunately, AML works with individual customers at no
additional cost to provide SSH-based data-transfer capabilities for the M7100.

Overall, AML's M7100 is a strong device, forging new territory for Linux in the
warehouses of commerce. It's a well designed tool, achieving the proper
balance of mission-specific features and cost. It's rugged yet easy to use. And,
although a bit heavy to carry for an eight-hour day, the device includes a
rugged wrist strap that should minimize the arm strain. The AML M7100 is
available only through resellers.

Tony Steidler-Dennison is a freelance PHP/MySQL developer and open-source
author. He spends his summers leaning into the two-lane curves of Iowa's back
roads. He also contributes to and maintains three blogs: the Linux-focused
“uptime” (uptime.steidler.net), the personal and political blog “Frankly, I'd
Rather Not” (steidler.net) and the running tech narrative “The CodeMode
Chronicles” (steidler.net/codemode). He carries on multiple simultaneous
electronic conversations at steidler@gmail.com.

Archive Index Issue Table of Contents

 Advanced search

http://uptime.steidler.net
http://steidler.net
http://steidler.net/codemode
mailto:steidler@gmail.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

 America's Army for Linux

Gary Glasscock

Issue #125, September 2004

This cross-platform offering allows players to pick from various squad
positions, each with its own weapon.

America's Army Operations, a game that's more interesting than common run-
and-gun games, is available for Linux. Not any old first-person shooter,
America's Army is squad-based. This game is free as in beer.

This cross-platform offering allows players to pick from various squad
positions, each with its own weapon. Weapons available are the M-16 rifle,
M-203 grenade launcher, Squad Automatic Weapon (SAW) and two different
sniper rifles. At around 588MB, the game takes a while to download, but believe
me, it's worth the time spent. Go to www.americasarmy.com to get your copy,
and while you're at it, create a free-of-charge account.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.americasarmy.com

Figure 1. You never know who's around the corner.

Now that you've installed the game and signed in through the Personnel menu,
your training begins. Score a 36 or higher on the Marksmanship Training, and
you can take Advanced Marksmanship Training. Complete that and you have
the option of being a sniper. You also can go the Airborne School, Medic
Training and Special Forces Training. The Airborne and Special Forces trainings
are needed to be able to play specific maps in the game. Medic training offers
you another way to gain points besides killing the enemy and completing the
objectives of the map.

Completing the objectives is one of two ways for your team to win a round. The
other is to kill everyone on the other team. You choose. But, what if you don't
want to be a team player? It's up to you really. If you insist on being a lone
ranger and killing everyone, you soon will find yourself kicked off the server by
your teammates and your honor (level) will be decreased. So go ahead, get the
game and join me on-line. Look for -=;DarkRain;=-; I'll be waiting.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 From the Editor

A Spectrum of Great Projects

Don Marti

Issue #125, September 2004

Wireless communication on Linux is much more than merely a wireless session
at a café. Spread out and enjoy the rest of the radio spectrum too.

Put “wireless” and “Linux” on the cover of the same magazine, and people are
going to expect 802.11b, or Wi-Fi, networking. We won't disappoint you, as our
master chef, Marcel Gagné, covers some desktop tools that you can use to
manage your wireless connections (page 24).

Also on the desktop, if you're tuning in to satellite radio and want to control the
receiver from Linux, you're in luck. Michael J. Hammel has a friendly GUI app for
you. Follow along and learn how you can modify it or write your own
applications (page 78).

We got a lot of positive response to Eric Blossom's introduction to software
radio in our June 2004 issue. People want a beginner's software radio project to
do, so Eric generously developed and wrote up the FM receiver on page 42.
Even if you missed the first article, this one will have you listening to FM
stations with software. You need a signal for testing, so now corporate radio
finally will be worthwhile for someone other than the three Eagles fans who
don't have a copy of “Hotel California” and the one guy who wants to buy a
Toyota but doesn't know where the dealer is. Once you get started, there are
plenty more projects to explore in software radio, so keep in touch when you
invent something.

Ian McLoughlin and Tom Scott are quietly inventing a new RF communications
mode, with the help of a Linux cluster, Linux FPGA tools and more. See how a
modern engineering lab works with Linux on page 36 and get some ideas.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

If you're a radio ham, and a little disappointed with the lack of OS diversity in
the mainstream amateur radio magazines, you're sure to enjoy Volker
Schroer's intro to PSK31 under Linux on page 50. In the early days of LJ, we had
a lot of ham readers, so write in if you want more on amateur radio.

Not that ham radio isn't plenty educational and community-building, but radio
amateurs settled for a bad deal with governments when radio regulation came
into effect, nailed down in the US with the Radio Act of 1927. Amateurs were
forbidden to broadcast music, news or general-interest programs. Hams in the
1920s put concerts and sports events on the air but found themselves
relegated to talking about—well, mostly about radios. For details, see Bill
Continelli's “History of Amateur Radio” on ham-shack.com.

What could have been the first peer-to-peer media went silent. Don't let it
happen to new technologies—no matter how tempting it is to want to regulate
spam, viruses or “bad software”, doing so could mean we'll wake up to find that
all our favorite community Web sites can talk only about Cascading Style
Sheets.

Whether you simply want a control panel for Wi-Fi and better music selection
via satellite radio, or you're ready to break out the soldering iron and invent a
whole new application for software radio, there's plenty to learn and enjoy in
this issue. Have fun and see you next month.

Don Marti is editor in chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Readers sound off.

 Linux for Cats

My cat Toby has kept a tight lid on my productivity until recently by demanding
too much attention, but I just discovered a new way to distract him...he is
fascinated by the screensaver of the whales, which lets me work on my other
Linux workstation. Kudos to the creators of that screensaver.

—
Michael Ferguson

Mark Kilgard's “atlantis” is part of XScreenSaver, at jwz.org. —Ed.

 Ultimate Linux Box Wish List

GNU/Linux has never been about the hardware. GNU/Linux is about FREEdom.
The distro that goes on the ULB, and what a user can do with that distro, is

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://jwz.org

more important than the hardware that makes up the box. An effort should be
made to use as much Free Software as possible and still be able to do all the
desirable things.

At a minimum, the ULB should be able to do all the i-things that a Mac will do,
and do them just as easily and well. Web video, Flash, radio, etc., should be as
accessible as with a Mac. It should do the basic stuff like easy hookup of
scanner and printer, icon mounting and umounting of USB removable drives
and hardware. Really good stereo, and home theatre (including ripping DVDs
and TiVo ability) seem essential for an Ultimate Box.

And gosh, wouldn't it be nice to be able to handle personal finance or small
business needs, AND be able to do federal and state taxes? Plus, since Linux is
inherently a server OS, and this box is the ultimate hardware, it might as well
serve half-a-dozen thin clients so the whole house, or small office, can enjoy
ULB power without the expense of multiple ULB boxes.

—
Eric Skalwold

Software patents keep free systems from supporting all the same audio and
video formats that proprietary ones do. But, you'll be happy to know that we
used the all-free Fedora for the Ultimate Linux Box this year. —Ed.

 C++ Please

I am a new subscriber and I must tell you what an extreme pleasure it is to
receive your magazine. I also subscribe to two other computer-related
magazines at the present, although LJ is by far the best of them all by light-
years.

Unlike most publications, you do not talk down to the readers; rather, you
expect them to be beyond hand-holding to the point where they are actually
willing to try things and experiment! From my experience with Linux over the
past 3–4 years—I didn't know about LJ until recently—it is by taking bits of
information I have read and trying things out, modifying things, simply
experimenting.

I went from knowing almost nothing about Linux, except the name, to being in
charge of a small LAN of about 25 computers running SuSE Linux Professional 9
and Microsoft Windows 2000 Professional, along with a server and backup
server both running SuSE 9 as well. I have been constantly amazed at how easy
both Linux and Windows clients work together on the network, much better in
fact, than when the network was entirely Windows-based. Using a Linux server

has also made the network much, much more secure than was possible using
only Windows.

I have noticed that most of your program listings are in languages like Python,
Perl, PHP and C. Could you do an article or two on C++, perhaps on the changes
that would need to be made to a C program you have listed to make it compile
with g++? Or an introduction to using g++? I think many readers might be new
to programming and would enjoy a brief introduction to C++.

—
Frank Robinson

Check out the June 2003 issue for a bunch of C++ articles. —Ed.

 Permissions on yum.conf

I enjoyed the article about Yum [LJ, June 2004]. However, yum.conf is a read-
only file. It would have been very helpful if Mr Bauer had told how to make the
file writable. I am a newbie to Linux and I need all of the input I can get on the
fine points of any process. Yours is the first Linux magazine I have purchased.

—
Steve Starr

Mick Bauer replies: I'm sorry you experienced difficulty configuring Yum. On my
Fedora system, /etc/yum.conf has its permissions set to -rw-r--r--. In other
words, it IS writable, but only by root. Nobody but root has any business editing
much of anything in /etc to begin with, because it contains system-wide
configuration files. Having said all that, maybe I'm overdue to write an
introductory article on filesystem security. Thanks for putting the idea into my
head!

 Hey! You Kids! Get Out!

Because of the regular appearance of photos of children in the Letters section
of Linux Journal, I will not be renewing my subscription. Your kids are all
adorable and all geniuses, no doubt, but this is not the place.

—
Anonymous

 Thank You for Promoting SPF

This is a brief note of thanks for the amazing quality of Linux Journal! I must
relate to you that when the LJ magazine shows up at my house, all else stops
while I browse and read the first article of interest. It seems there is always at
least one amazing piece!

I must add that the recent piece on SPF [LJ, May 2004] is a huge contribution to
the industry at large. I am sure it will have a major influence for the better on all
of us who are nearly totally dependent on e-mail. I found it especially helpful in
communicating with the poor souls charged with keeping our network alive.

It used to be Byte, but now LJ rules!

—
Robert W. Carter

 Une Leçon de Français

I love Marcel Gagnés articles and I love Linux Journal and I love the care you
take in editing the magazine to ensure stylistic and orthographic decency. It is
with a reluctant keyboard, therefore, that I beg you to fix the French tag in
Marcel's column. It should be A vôtre santé, not A vôtre santé. Vôtre is the
adjective form; vôtre the pronoun. As vôtre here is modifying santé, it is an
adjective. Mille remerciements!

 Arkeia User Report

I was a little disappointed with the Arkeia review in the July 2004 issue.
Although the perspective of a user new to the product is certainly valuable, a lot
of us are herding systems that will stress the software a lot harder.

The number one issue for me right now is that if one scheduled backup job
runs long, and the next scheduled job starts, both hang. The support response
is that jobs should be scheduled further apart, but this fails to address the
issue. In any serious system, there will be occasional overlaps, and the software
should cope in some sensible fashion. Either canceling the second job or
holding it until the hardware resources were available would be better than a
hang. Also, some indication of a problem is not too much to ask.

A related problem is that the software is licensed per server, per client and per
simultaneous data stream. If one has eight machines to be backed up, and four
streams, the software will back up four machines at a time until all eight are
completed. However, a backup job must have at least one stream assigned to it
to stay in queue. Thus, when a second job starts, even if it cannot run, it steals a

stream from the running backup. If the hang problem ever gets addressed, this
is still potentially troubling.

The database structure used by the server to track files and tapes is stored in a
filesystem directory tree that mirrors the backed-up data. The software seems
to take a significant performance hit in dealing with large numbers of small
directories.

Arkeia strongly recommends that non-ark methods be used to back up the root
filesystem of the backup server and the Arkeia installation itself.

There are a number of issues with the GUI as well. Mr Wilder covered some of
them, and his comments are well taken. Others nits include inconsistent
placement of buttons with similar actions in different functions of the GUI, and
the fact that the “go back” button is sometimes missing from the function bar
(or that in one or two places, the function bar is missing altogether).

The log browser functionality has two frustrating quirks: in viewing the full
system log, one sees a calendar month at a time. It's not at first obvious how to
change months, which is accomplished by clicking on the text above the log text
box naming the displayed month. Said text bears no indication that it's hot. It's
also practically guaranteed that one backup per month will be split across two
displays. Perhaps displaying the most recent 30 days or so would be more
useful.

It seems that users would be better served by a GUI that wasted less
programming effort on flash, in favor of solid function.

—
Dennis Boone

Dan Wilder replies: I am curious as to whether you've looked into Amanda, an
open-source backup system we use at Linux Journal. I believe it might address
some of the difficulties you mention (www.amanda.org).

There's no GUI, but as I might have implied in the article, my personal opinion is
that although a GUI might be useful for selling a backup software package, it is
apt to be mostly a distraction for the accomplished user. Amanda configuration
is performed entirely by editing text files, and backups are managed from the
command line or from cron jobs.

Amanda acts as a scheduler and indexer for dump or tar, so it'll back up nearly
anything UNIX-y in nature. Backups are centrally managed from a backup

http://www.amanda.org

server. Amanda will handle any reasonable number of clients. Environments
with many different processor architectures and OSes are not a problem.

There is no native client support for Windows operating systems. SMB shares
exported from Windows systems can be backed up, but some attributes may
be lost and backups of some files can fail due to share violations.

Amanda has a somewhat novel way of managing backups. You specify the
volumes (hosts and their partitions or directories) to be backed up, along with
some other constraints, and Amanda schedules the backup levels. Total
dumped data volume is balanced from backup run to backup run by mixing
levels for different volumes within a run. You wind up making much better use
of scarce tape space and runtime, than you could likely do with a fixed schedule
of backup levels. When possible, Amanda advances lower-level volume backups
to exceed your constraints.

Support is provided by a low-traffic mailing list. Although this support does not
offer the almost immediate turnaround I found with Arkeia, most installation
questions raised on it get addressed, so long as they're really installation
problems and not arguments about the fundamental design or demands for
features nobody is likely to implement.

An FTP-like command-line browser is available for doing restorations. As with
some other backup software, you're vulnerable if you happen to lose the on-
line tape directory. At this point I am not aware of any reasonable way to
rebuild the index from tapes. On the other hand, it's easy to locate the index
and to make provisions outside of Amanda to keep copies. Indexes are kept in
flat files mirroring the host/volume structure of the backup schedule, having
one line per dumped file or directory. It is possible this scales better than the
directory-mirroring structure you describe.

Some soft failover provision is made by Amanda's use of a holding disk for
backups, from which they are streamed to tape. If you provide enough disk
storage, an entire backup run can proceed on schedule even when a tape drive
fails or when somebody neglects to load the expected tapes. The backup is
then flushed to tape after the problem is corrected.

Support for stackers may require some scripting skills, there's almost no
support for backing up to anything except tapes, and your first Amanda
installation can be painful, as there are lots of ducks that have to be lined up
precisely, so to speak. Multiple drives cannot be configured in sequence, so that
when a drive is full, the backup simply moves on to the next. Multiple backup
runs cannot be written to a single tape. If two runs to the same tape drive
overlap, the second simply aborts. On the other hand, there are no license

limitations to fret about. Once set up correctly, about the only thing you'll ever
do to Amanda is change tapes, restore files and sometimes flush a failed dump
to fresh tape.

 BSD-Influenced Distro: Gentoo

This e-mail is in regards to the letter “BSD, Please” in Linux Journal, July 2004.
The reader loves BSD for its ports. I thought that I would bring up Gentoo Linux
(gentoo.org), one of the fastest-growing distros, whose package management
system, Portage, is based largely on BSD's ports. It is a great source-based
distro.

—
Nicolas Steinberg

Watch for an article on deploying Gentoo packages in an upcoming issue. —Ed.

 Photo of the Month: Mmmm, Penguin Cake

I happily submit this photo of my husband Kevin, with his Linux-inspired 25th
birthday cake. He is an avid reader of your magazine and user of Linux at home
and work.

Photo of the Month gets you a one-year extension for your subscription.
Photos to info@linuxjournal.com. —Ed.

 Erratum

http://gentoo.org
https://secure2.linuxjournal.com/ljarchive/LJ/125/7603f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7603f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7603f2.large.jpg
mailto:info@linuxjournal.com

The article “RTAI: Real-Time Application Interface”, which appeared in the April
2000 issue of Linux Journal, is missing attribution for a list of issues affecting
real-time support in Linux. Attribution should go to “The RTLinux Manifesto” by
Victor Yodaiken, which appeared in the proceedings of the 5th Linux Expo in
1999.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UpFront

• diff -u: What's New in Kernel Development
• LJ Index—September 2004
• They Said It

diff -u: What's New in Kernel Development

Zack Brown

Issue #125, September 2004

A new process-accounting project, called Enhanced Linux System Accounting

(ELSA), has been started for Linux. Mechanisms for tracking system behavior on
a process-by-process basis already exist; what ELSA proposes is to collect
processes together into banks and assess them as a group. In theory, other
aspects of the system also can be grouped together into banks for ongoing
analysis.

The InterMezzo filesystem has been dropped from the 2.6 Linux kernel on the
grounds that Peter J. Braam has stopped maintaining it, and no one else has
stepped up to take his place. Peter himself acknowledges that InterMezzo can
be maintained adequately as an independent module if anyone cares to do it
and has helped smooth over Linus Torvalds' decision to drop it. InterMezzo,
intended for large clusters, server replication, mobile computing and other
high-availability projects, appears not to have been maintained seriously since
2002, and its mailing lists have been dead for some time. Unless people
become passionate enough about it to pick it up themselves, it is doubtful the
filesystem will return to the mainline Linux kernel tree.

Although 2.6 continues to stabilize, the 2.4 kernel continues to be most users'
first choice for their systems, and a lot of feature swapping takes place between
the 2.4 and 2.6 trees. Marcelo Tosatti, the 2.4 maintainer, has been trying to
slow down the adoption of new features in 2.4, hoping that users needing
those features would migrate to 2.6. But until Linux 2.6 becomes firmly
established, he has found himself under pressure to accept features like Serial

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

ATA (SATA) in spite of the fact that stable kernel series are not supposed to
include new features that might destabilize the system. During all of this,
Marcelo also has been hard at work on some 2.6 features, such as some recent
per-user resource limits he submitted in April 2004 to Andrew Morton, the 2.6
maintainer (along with Linus until 2.7 forks off).

These changes were inspired by the discovery that users could execute a
denial-of-service (DoS) attack by creating too many pending signals, among
other things. Unfortunately, although these fixes certainly are needed for
security reasons, it is possible that the various shells (bash, csh and others) may
need to be updated as well, in order to take advantage of the new limits. This
poses some compatibility problems, making it difficult for users to upgrade
only the kernel if they want, without at the same time upgrading other software
as well.

Every once in a while someone gets a really weird idea and then goes ahead
and implements it. Some would say Linux is itself an example of this, but
another example is the recent attempt by Sergiy Lozovsky to embed a LISP

interpreter into the 2.6 Linux kernel. The purpose was to allow system
administrators to control the security policies of their systems using a high-level
language, so they wouldn't have to alter the kernel source code and recompile.
Sergiy's LISP interpreter was much simpler and smaller than Common LISP,
taking up much less RAM and running in a virtual machine that would protect
the system from any LISP bugs introduced by careless system administrators.
The worst that would happen is that their security policy wouldn't work. There
is virtually no chance that this feature will be accepted into the kernel proper,
for several reasons. First, the LISP language probably is not going to be a
favorite with system administrators who would want such an interpreter, as
they probably would prefer something more shell-like. And second, because
virtually the same thing could be implemented in user space with no need of
embedding the entire interpreter in the kernel at all. This also would obviate
the need for a virtual machine to protect the system from system administrator
programming errors. In spite of any objections, however, an embedded LISP
interpreter in the kernel is fun to play with and might be the sort of thing to be
maintained for a long time outside of the kernel, by enthusiastic folks who
simply like the weirdness of it all (or who really think it's a good idea).

The entire 2.6 development process is somewhat unusual, even for Linux. First,
Linus Torvalds seemed to hand off development to Andrew Morton, but then it
turned out they would continue to work in tandem. Andrew continued to
produce kernel versions with names like 2.6.6-rc1-mm2, the -mm being a
holdover from when most of his patches had to do with memory management.
Recently he also has begun to release a -mc series, standing for merge
candidate, that is, sets of patches to be merged with Linus' tree. While doing

this, he still has released -mm versions, although presumably these also are
intended to be merged with Linus' tree. From the user perspective, everything
is still clear and calm, because the 2.6.5, 2.6.6, 2.6.7 and so on, releases all still
come out and are housed in known locations. But, unlike the ongoing 2.4 and
2.0 (and theoretically 2.2 as well, although its maintainer Alan Cox has been
fairly quiet lately) development, 2.6 maintenance has seemed to bounce
around a bit more than the others.

LJ Index—September 2004

• 1. Worldwide server sales, in billions of dollars, for the first quarter of
2004: 11.5

• 2. Year-to-year percentage revenue growth in server sales: 7.3
• 3. Year-over-year server unit shipment growth percentage: 22.4
• 4. UNIX year-over-year server revenue percentage decline: 3
• 5. Windows server revenue percentage growth: 16.4
• 6. Windows server shipment percentage growth: 26.5
• 7. Linux server sales percentage growth: 56.9
• 8. Linux server shipment percentage growth: 46.4
• 9. Number of consecutive quarters of double-digit Linux server revenue

growth: 7
• 10. Number of billions of dollars in worldwide quarterly factory revenue

approached by Linux: 1
• 11. Number of consecutive quarters in which Linux servers sales have

exceeded $900 million: 2
• 12. Peak number of simultaneous listeners to the Linux-powered Radio

Paradise: 5,647
• 13. Linux market opportunities in China, in millions of dollars by 2008:

41.9
• 14. Linux market opportunities in Japan, in millions of dollars by 2007: 105
• 15. Thousands of Linux-certified practitioners at IBM: 3
• 16. Thousands of people at IBM that have “some kind of Linux exposure”:

12
• 17. IBM revenue percentage growth in 2004 over 2003: 20.5
• 18. Number of Oracle servers at city of Bergen (Norway) moving to Linux:

8
• 19. Number of Windows application servers being consolidated to Linux

servers in Bergen: 100

• 20. Approximate number of Linux servers to which Bergen's app servers
are being consolidated on IBM eServer BladeCenters running Linux: 20

• 1–11, 17: International Data Corp.
• 12: Radio Paradise
• 13–14: International Data Corp. via InternetNews

• 15, 16: Times of India

• 18–20: ZDNet

They Said It

Linux servers are playing increasingly important roles in IT customers'
computing infrastructure. They are taking on enterprise workloads, now that
more ISV applications are available for both technical and commercial
workloads on the Linux server platform.

—Jean S Bozman, research vice president, Global Enterprise Server Solutions,
International Data Corp. (www.idc.com/getdoc.jsp?
containerId=pr2004_05_25_194643)

The weather scares us a bit, but on the other hand we know a lot of people up
there, and they all seem happy. And it's bound to be less crazy than Silicon
Valley.

—Linus Torvalds, on moving from Silicon Valley to Portland, Oregon
(management.silicon.com/careers/0,39024671,39121320,00.htm)

In addition to the IT-based benefits from migrating to Linux, we attain a
business model that doesn't tie us to a single vendor's solution architecture. By
migrating to Linux, the City of Bergen has a business model that is open and
democratic and, we believe, that will ensure a greater degree of freedom of
choice, more efficient operation and major cost savings that will benefit the
citizens.

—Janicke Runshaug Foss, CIO of the City of Bergen, Norway (news.zdnet.co.uk/
0,39020330,39157677,00.htm)

The new API is HTML, and the new winners in the application development
marketplace will be the people who can make HTML sing.

—Joel Spolsky (www.joelonsoftware.com/articles/APIWar.html)

Archive Index Issue Table of Contents

http://www.idc.com/getdoc.jsp?containerId=pr2004_05_25_194643
http://www.idc.com/getdoc.jsp?containerId=pr2004_05_25_194643
http://management.silicon.com/careers/0,39024671,39121320,00.htm
http://news.zdnet.co.uk/0,39020330,39157677,00.htm
http://news.zdnet.co.uk/0,39020330,39157677,00.htm
http://www.joelonsoftware.com/articles/APIWar.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

On the Web

A Better Wireless Experience

Heather Mead

Issue #125, September 2004

Our Web authors are sharing the details of their projects aimed at creating and
improving Linux wireless technology.

A while ago, I had conversations with two of my least technically inclined
friends, both of whom brought up the topic of Wi-Fi within minutes. In fact, one
friend, a dancer and choreographer, called me specifically to ask what he could
do with “the Wi-Fi thing in my laptop”. He'd bought a shiny new laptop on the
recommendation of another friend and now was confessing to me that
although he knew what Wi-Fi was theoretically, he wasn't sure what he could do
with it.

Fast forward to the recent 4th of July weekend, when I spent time with these
friends and found out they've both figured out a whole lot they can do with
wireless. The choreographer told me he is working on-line with dancers on a
new production. He's also collaborating with the cellist writing music for the
piece. The cellist lives in San Diego, and my friend is doing most of this work
while running around Seattle and hopping on any of the many hot spots he
locates thanks to SeattleWireless.net. And, although certainly not the most
important function that wireless technology ever served, without cell phones
with IM features, my other friend and I never would have located each other
among the 30,000+ people present at the fireworks display the evening of July
4th.

For those of you who've mastered IM and who are able to locate a hot spot
blindfolded, the topic of this issue is Everything Wireless, and the LJ Web site
offers even more project news, advice and how-tos. Take, for example, “Getting
On-line Anywhere with Bluetooth and GPRS”, by Sreekrishan Venkiteswara
(www.linuxjournal.com/article/7525). This article offers an overview of how
BlueZ and General Packet Radio Service (GPRS) work and explains how they can

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.linuxjournal.com/article/7525

be used when designing embedded Linux products, including cell phones and
PDAs. Venkiteswara writes, “Because Bluetooth supports device inquiry and
service discovery, the Bluetooth devices automatically can use a nearby cell
phone for Internet connectivity, without cumbersome configuration of such
details as physical addresses.”

In “A Linux-Based Implementation of Mobility Using SIP”
(www.linuxjournal.com/article/7380), the developers explain how they created
the “first open-source SIP implementation that supports mobility” by adding
mobility capabilities to Vovida's VOCAL VoIP software. They write, “The software
supports seamless SIP signaling when the user moves from network to
network, as well as automatic handoff if the user is in the middle of a call while
changing networks.”

On the end-user side, for those of you struggling with wireless connectivity for
your laptop, be sure to check out the latest installment of Doc Searls'
adventures with his new IBM T40 laptop, “The Laptopia Odyssey, Part 2”
(www.linuxjournal.com/article/7636). A big part of this stage in creating Doc's
ultimate mobile workstation is getting Wi-Fi to work as well and as consistently
as he needs. Things improved once he switched to SuSE Professional 9.1 and
made a few other changes, but it's still not perfect. He writes, “Kismet seems to
work, so far. It sees 802.11b and b/g access points, two of each (three here, one
next door). I still need to figure out how to get the ThinkPad to switch easily
from one to another.” Doc also writes about using FireWire and the browser
and office applications he likes best for his laptop.

If you're doing something new and interesting with wireless or if you've
improved your wireless experience, why not share it with the rest of the Open
Source community? Send me an article proposal at info@linuxjournal.com.

Heather Mead is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/7636
mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Our experts answer your technical questions.

 Wireless Settings in Fedora

I've got my wireless NIC working in Fedora Core 2, and I'm able to communicate
with the network after I configure with iwconfig. But, after I reboot, all the
settings are lost, and I have to enter all the info again. Is there something I'm
not doing, or is this problem something else?

—
Weoh G

weoh3@cox.net

You should use the system configuration tools to set up the device: Task
Bar→System Settings→Network.

—
Christopher Wingert

cwingert@qualcomm.com

The wireless-tools command-line utilities (iwconfig, iwspy, iwpriv) do not stick
through a reboot, as you have experienced. The thing to do is to implement the
settings through the appropriate configuration file. In the case of Fedora, you
probably can get what you need set permanently, by adding wireless-specific
options to your ifcfg file (/etc/sysconfig/network-scripts/ifcfg-ethX, where ethX is
the Ethernet device name assigned to your wireless card). You simply need to
place the additional wireless-related options into that file. For example, on my
laptop, which connects over an 802.11b interface to the router/firewall/dhcp
server I hacked together in my house, the file is very simple:

DEVICE=eth1
BOOTPROTO=dhcp
ONBOOT=no
MODE=Ad-Hoc

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:weoh3@cox.net
mailto:cwingert@qualcomm.com

CHANNEL=1
KEY=XXXXXXXXXX

The MODE, CHANNEL and KEY options were all I needed for my setup; yours
are sure to be different, but anything you can do via the command line should
be available as an option in the file. For a list of all available settings, take a look
at /etc/sysconfig/network-scripts/ifup-wireless.

—
Timothy Hamlin

thamlin@nmt.edu

The following page contains specific instructions on how to set wireless
networking on the Fedora Core Linux distribution: www.siliconvalleyccie.com/
linux-hn/wmp11-linux.htm.

—
Felipe Barousse Boué

fbarousse@piensa.com

 Hunting for a Single-Board Computer

In Embedded Linux Journal, issue 9, there was an article titled “Update on
Single-Board Computers” that contained a picture captioned “An EBX Form
Factor PowerPC-based SBC from Motorola”. What I wanted to know is which
company manufactures such a board—an EBX Form Factor PowerPC-based
SBC.

—
Chirag Cheema

cscheema@tpcsed.com

With some research, I turned up at least two options:
www.embeddedplanet.com/products/rpxc.asp and www.acttechnico.com/mot-
ebx-motorola.html.

—
Chad Robinson

mailto:thamlin@nmt.edu
http://www.siliconvalleyccie.com/linux-hn/wmp11-linux.htm
http://www.siliconvalleyccie.com/linux-hn/wmp11-linux.htm
mailto:fbarousse@piensa.com
mailto:%0Acscheema@tpcsed.com
http://www.embeddedplanet.com/products/rpxc.asp
http://www.acttechnico.com/mot-ebx-motorola.html
http://www.acttechnico.com/mot-ebx-motorola.html

chad@lucubration.com

Try Ampro: www.ampro.com.

—
Felipe Barousse Boué

fbarousse@piensa.com

 Getting System Info

We have a system-defined structure called MACHINE_STATIC to find machine
architecture, including the IP address, processor speed, OS and so on. I need a
similar structure on Linux to extract machine architectures. Do you know if one
is available?

—
Rajesh Kumar Patnaik

rajeshp_80@yahoo.co.in

Not a structure, per se, although certain ioctl() calls can provide many of these
details. But you should be looking toward the new mechanisms for extracting
this information—procfs and the upcoming sysfs. Note that sysfs is new, and
not many systems implement it yet. The files in /proc, when read, will provide
you with many relevant system data elements. For example, /proc/cpuinfo
provides CPU data, /proc/net/route provides network routes (IP addresses are
in hex) and /proc/version provides the kernel version.

—
Chad Robinson

chad@lucubration.com

 Tools for Disk Repair?

Does anyone know what tools are used in Red Hat 8 to find and repair disk and
file problems—scandisk, scan registry?

—
moo

mailto:chad@lucubration.com
http://www.ampro.com
mailto:fbarousse@piensa.com
mailto:rajeshp_80@yahoo.co.in
mailto:chad@lucubration.com

moochoo_86@hotmail.com

These tools are not specific to a distribution; they are specific to a filesystem
type. Like other distributions, Red Hat supports a number of filesystems,
including ext2, ext3, xfs, ReiserFS and many others. The “see also” section in the
man page for fsck lists the file checking utilities for the most common
filesystems.

Recovery options available is a key selection criteria for choosing a filesystem in
the first place. New Linux users are often baffled by the array of choices and
seek guidance regarding filesystem selection. I always recommend that the
availability of recovery tools be part of this evaluation.

—
Chad Robinson

chad@lucubration.com

 GUI Database Front End?

I am using Red Hat 9 and SuSE 9 and really like both of them as well as
OpenOffice.org software. However, I am puzzled by the fact that I cannot locate
any quality database programs similar to Microsoft Access. I would like to build
a database that will work on a small intranet consisting of three or four
machines.

—
Todd Hoover

thooveril@aol.com

If you want an open-source product, take a look at Rekall, which was recently
open-sourced by TheKompany.com. For a proprietary but inexpensive
alternative, take a look at Adabas D, part of Sun's StarOffice. Both products are
younger than Access and do not implement every function provided by it, so if
you are looking to migrate existing databases, complex applications may not be
1:1 portable. However, both products do provide significant functionality and
may be suitable for your environment, especially if your needs are more
focused on new applications.

—
Chad Robinson

mailto:moochoo_86@hotmail.com
mailto:chad@lucubration.com
mailto:thooveril@aol.com

chad@lucubration.com

OpenOffice.org can work with almost any ODBC or JDBC database, including
PostgreSQL, MySQL and even Access. Go to Tools→Options→Data Sources to
set up a connection.

—
Bruce Byfield

bbyfield@axionet.com

I suspect you are interested in the MS Access-like user interface. For that there
are many front ends for PostgreSQL, going from pgaccess, www.pgaccess.org,
to OpenOffice.org's database tools that interface to PostgreSQL and other
RDBMS. As a side note, tons of companies use open-source databases, from
small companies with small Web sites to Fortune 500-sized companies; one
special case may be the dot ORG registry that relies on PostgreSQL for
managing the overall .org domain on the Internet.

—
Felipe Barousse Boué

fbarousse@piensa.com

If your application's interface is a simple form-based one, consider doing it as a
Web application instead. You won't have to maintain software on the client, you
won't have to learn different tools for internal and customer-facing applications
and users already know how to use a browser.

—
Don Marti

info@linuxjournal.com

 Active Directory, Meet PAM

My company uses a mixture of Linux (Red Hat AS 2.1) and Microsoft Windows
servers. I want to set up a central authentication server for both platforms. We
use Active Directory, and it has been suggested that we might be able to use AD
for Linux. Is it possible to use AD as a central authentication server for Linux,

mailto:chad@lucubration.com
mailto:bbyfield@axionet.com
http://www.pgaccess.org
mailto:fbarousse@piensa.com
mailto:info@linuxjournal.com

and what's the best way to do it? Or, would we be better off with a Kerberos or
LDAP server?

—
Paul

pammann@execomm.net

In Linux, explore a security layer known as Pluggable Authentication Modules,
or PAM. This allows you to authenticate users logging in locally against your AD
servers.

For Apache, take a look into mod_auth_ldap, which allows you to do the same.
Alternatively, you can use mod_auth_pam to instruct Apache to share your
Linux server's PAM deployment. This is worthwhile if you do intend to have
multiple applications use this data, because it will reduce your setup time.
However, if Apache is your only application (and this is not uncommon) you
might want to stick with a direct mod_auth_ldap configuration, as there are
fewer steps involved in its configuration.

A third common configuration is Samba, and there is a good HOWTO for this
configuration at this site: www.netadmintools.com/art172.html.

—
Chad Robinson

chad@lucubration.com

In the long run, you'll likely be happier with a cross-platform “single sign-on”
plan based on LDAP, as described in “OpenLDAP Everywhere” in the December
2002 issue of Linux Journal. It works on Linux and Microsoft Windows and is
more flexible and future-proof than a vendor-specific solution. But if you do
plan to authenticate against Microsoft Active Directory using Kerberos and
PAM, Tim Fredrick has some helpful notes at acd.ucar.edu/~fredrick/linux/
ad.html.

—
Don Marti

info@linuxjournal.com

mailto:pammann@execomm.net
http://www.netadmintools.com/art172.html
mailto:chad@lucubration.com
http://acd.ucar.edu/~fredrick/linux/ad.html
http://acd.ucar.edu/~fredrick/linux/ad.html
mailto:info@linuxjournal.com

 Reader Responses

Dear Bill—I just saw your question in Linux Journal [July 2004] about setting up
a Red Hat 9 and Windows 2003 server on the same PC, and I wanted to add
something to the replies you already received. Namely, 128MB of RAM is too
small for a Red Hat 9 or Fedora Core installation, if you use the GNOME desktop
(the standard choice). You need at least 256MB of RAM for this. If you do not
want to add memory (although it's pretty cheap these days), and you want to
stay with Red Hat, then it is necessary to set up an alternative, lightweight
window manager, like IceWM. This would involve extra trouble for a beginner
on Red Hat, where IceWM does not come automatically installed.

SuSE 9.1 is a distribution that makes it easy to choose between KDE or GNOME
(with heavy RAM requirements) or IceWM or other lightweight window
managers. You can buy SuSE 9.1 directly from the SuSE Web site. They have a
Personal edition for about $40, but it doesn't include server software. The
Professional edition for about $90 does include it.

—
Robert Littlejohn

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 New Products

Redfone Enterprise Communication System, HS-4703 and HS-4702 Embedded
Engine Boards, WaveStore 703 and more.

HS-4703 and HS-4702 Embedded Engine Boards

Boser Technology announced the release of two embedded engine boards
using the Intel 82865GV chipset. The HS-4703 and HS-4702 boards offer dual-
channel DDR 400 main memory, an 800MHz system bus, eight USB 2.0
connectors, four COM connectors, a PCI ATA/33/66/100 IDE controller, an AC'97
3-D audio controller and a Serial ATA controller. In addition, both boards come
with four IDE drives supporting ATA/33/66/100, a 48-bit dual-channel LVDS
panel interface and giga LAN. The HS-4702 comes with TV-out, supporting PAL
or NTSC TV.

Boser Technology, USA, 453 Ravendule Drive, #F, Mountain View, California
94043, 650-967-3898, www.boser.com.tw.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Redfone Enterprise Communication System

Redfone Enterprise Communication System (ECS) is a telephone system for
connecting remote branch offices, call centers, remote agents and mobile
employees. Designed for small to mid-sized businesses looking to replace PBX
phone systems, ECS is built with Linux, Asterix open-source PBX software, off-
the-shelf hardware and basic telephony components. ECS offers basic phone
features, plus VoIP functionality, a Web interface to voice mail, conference
calling, local and remote call agents and multiple mail folders. In addition, ECS
enables voice mail and faxes to be sent as e-mail attachments that can be
accessed by wireless devices, laptops, desktops and PDAs from any location.

Redfone Communications, Inc., 14380 SW 139th Court, Miami, Florida 33186,
786-544-1180, www.red-fone.com.

WaveStore 703

The WaveStore 703 is a signal recorder/playback unit designed as a desktop
cube for work environments with limited space or for applications that require
a transportable unit. The WaveStore 703 offers multiband signal recording/
playback, a baseband or 70MHz IF analog interface, bandwidth programmable
to 8MHz, tunable center frequency, 500GB storage capacity, continuous
playback looping capabilities, DVD-R/W for data archiving and retrieval and
optional external trigger signals. The cube contains a Pentium-based host
computer, a Red River PCI transceiver card and complete suite of user-interface
software.

Red River, 797 North Grove Road, Suite 101, Richardson, Texas 75081,
972-671-9570, www.red-river.com.

PlanMaker 2004

PlanMaker 2004 is spreadsheet software that operates on various OSes,
including Windows and Linux, and offers the same feature set on all platforms.
It also can operate on pocket and handheld PCs, as it requires limited RAM
space. Over 320 calculation functions are built-in and cover areas such as date
and time calculations, mathematics, statistics and data analysis. PlanMaker also
offers features for preparing presentations, including stylesheets, various
formatting options, an AutoShapes drawing module and freehand drawing.
Charts and graphs can be created from any of the 70 different types of 2-D and
3-D charts that PlanMaker supports. PlanMaker also reads and writes Microsoft
Excel files—Excel 5.0, 95, 97, 2000, XP, Excel 2003 and Excel for Apple Macintosh
—for easy and safe file exchange with Microsoft Excel users.

SoftMaker Software GmbH, Kronacher Str. 7, D-90427 Nuernberg, Germany,
info@softmaker.de, www.softmaker.com.

Mono 1.0

Mono 1.0, a community project sponsored by Novell, is an open-source
development platform based on the .NET framework that allows software
developers to build Linux and cross-platform applications. Mono 1.0 provides
APIs and tools for developing Web services and client and server side
applications that can be deployed on various platforms, including Solaris, Mac
OS X, Windows NT/XP and various UNIX/Linux systems. Mono 1.0 uses the
GTK# GUI programming library, so developers can target various platforms
with a single code base from any of the Mono-compatible programming
languages, such as Visual Basic, Python, JScript and Java. In addition, a new Web
site, www.mono-project.com, has been launched with tools, resources and
other information for Mono developers. Mono 1.0 can be downloaded at
www.mono-project.com/downloads/index.html.

Novell Corporation, 404 Wyman, Suite 500, Waltham, Massachusetts 02451,
781-464-8000, www.novell.com/linux.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7626f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7626f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7626f2.large.jpg
http://www.mono-project.com
http://www.mono-project.com/downloads/index.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/7626f3.large.jpg

L-Server

Linux Media Arts announced the availability of the L-Server, a 64-bit Linux
digital disk recording (DDR) system. The L-Server employs AMD dual Opteron
64-bit technology, dual DDR memory, 1TB of storage, an AJA HD capture/
playback card and eight-channel embedded AES/EBU audio. It has Serial
RS232/422 control ports with Sony protocol for external deck control. It is
available in an LMA mini-tower or 3U LMA rackmount configuration. Its open
architecture supports any plugin, or users can build their own. The L-Server
SDK allows developers to build plugins, codecs and special effects that can be
dropped onto the video track timeline. Users can operate the L-Server and/or
remote tape deck from a control panel or from a browser window. L-Server can
capture directly from all HD VTRs and various HD cameras. Graphics can be
shared across platforms using the standard NFS/SMB filesystem.

Linux Media Arts, Inc., 10442A Rockport Circle, Reno, Nevada 89521,
775-787-3768, www.lmahd.com.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7626f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7626f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7626f4.large.jpg

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/125/7626f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/125/7626f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/125/toc125.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Column
	Reviews
	Departments
	Listening to FM Radio in Software, Step by Step
	Eric

Blossom
	Getting Started
	What Is Frequency Modulation?
	The Block Diagram
	MIPS Are Us!
	Quadrature Demodulation
	A Multichannel Receiver
	There's More Than One Way to Do It!
	Summary

	Chat on the Air with LinPsk
	Volker

Schroer
	Getting LinPsk
	Running LinPsk for the First Time
	The First QSO
	Tips
	Further Steps
	Additional Features
	Future Plans

	Driving the Mars Rovers
	Frank

Hartman
	Scott

Maxwell
	How We Got Here
	The RSVP System
	RoSE
	HyperDrive
	Conclusion

	The GPS Toolkit
	Brian
 W.
Tolman
	Ben

Harris
	The Global Positioning System
	GPS in a Nutshell
	The Position Solution
	Reducing Measurement Errors
	Improved Ephemerides
	GPS Data Sources
	GPS File Formats
	GPS Receivers and Open Source
	The GPS Toolkit
	Getting Started with the GPS Toolkit
	Enhanced Positioning
	Carrier-Phase Discontinuity Correction
	Satellite Position Interpolation
	The Future of GPSTk

	Ximba Radio: Developing a GTK+/Glade GUI to XM Satellite
Radio
	Michael
 J. Hammel
	A Preview of the Project Results
	Design Goals
	Getting Familiar with Glade
	UI Design with Glade
	Coding Process
	Final Analysis

	Ten Commands Every Linux Developer Should Know
	John

Fusco
	1. ctags
	2. strace
	3. fuser
	4. ps
	5. time
	6. nm
	7. strings
	8. od, xxd
	9. file
	10. objdump

	LDAP Account Manager
	John H. Terpstra

	Space-Time Processing—Linux Style
	Ian

McLoughlin
	Tom

Scott
	Development
	Zion
	Support
	Debugging and Monitoring
	Conclusion

	At the Forge
	WordPress
	Reuven
 M.
Lerner
	Installing WordPress
	Using WordPress
	User Interface
	Conclusion

	Kernel Korner
	Extending Battery Life with Laptop Mode
	Bart

Samwel
	Hard Drives and Battery Life
	Laptop Mode
	How It Works
	Setting It Up
	Spinup Debugging
	Acknowledgements

	Cooking with Linux
	The Wireless Kitchen
	Marcel Gagné

	Paranoid Penguin
	Rehabilitating Clear-Text Network Applications with Stunnel
	Mick Bauer
	Background
	Installing Stunnel
	Creating Certificates with OpenSSL
	Configuring Stunnel's Global Settings
	Configuring a Tunnel
	Conclusion

	EOF
	Faster Training for Smarter Customers
	Rich

Bodo

	AML's M7100 Wireless Linux Terminal
	Tony Steidler-Dennison

	America's Army for Linux
	Gary

Glasscock

	From the Editor
	A Spectrum of Great Projects
	Don Marti

	Letters
	Linux for Cats
	Ultimate Linux Box Wish List
	C++ Please
	Permissions on yum.conf
	Hey! You Kids! Get Out!
	Thank You for Promoting SPF
	Une Leçon de Français
	Arkeia User Report
	BSD-Influenced Distro: Gentoo
	Photo of the Month: Mmmm, Penguin Cake
	Erratum

	UpFront
	diff -u: What's New in Kernel Development
	Zack Brown

	LJ Index—September 2004
	They Said It

	On the Web
	A Better Wireless Experience
	Heather Mead

	Best of Technical Support
	Wireless Settings in Fedora
	Hunting for a Single-Board Computer
	Getting System Info
	Tools for Disk Repair?
	GUI Database Front End?
	Active Directory, Meet PAM
	Reader Responses

	New Products
	HS-4703 and HS-4702 Embedded Engine Boards
	Redfone Enterprise Communication System
	WaveStore 703
	PlanMaker 2004
	Mono 1.0
	L-Server

